A Synthetic Eddy Method for generating inflow conditions for LES

N. Jarrin, S. Benhamadouche, D. Laurence, R. Prosser
Table of Contents

• Introduction to Synthetic Turbulence

• The Synthetic Eddy Method

• Numerical Test Cases
 – Spatially Decaying Isotropic Turbulence
 – Inlet/Outlet Plane Channel Flow Re*=395

• Conclusions and Future Work
Introduction to Synthetic Turbulence

• A need specific to LES and DNS
• A wide range of applications
 – Initialisation of flow fields
 – inlet boundary conditions, embedded LES
 – Forcing at the interface of hybrid RANS/LES
• How to generate realistic turbulence?
 – Most efficient methods are not industrial (database rescaling, POD)
 – Synthetic generation of turbulence from RANS statistics
 • random method
 • spectral method (Lee et al. Physics of Fluids 1992)
 • digital filtering (Klein et al. Journal of Computational Physics, 2003)
Synthetic Eddy Method (SEM) Principle

- A turbulent flow is a superposition of coherent eddies

- Each eddy is described by a shape function $f(x)$ with compact support

 $[-r_x; r_x] \times [-r_y; r_y] \times [-r_z; r_z]$

- Each eddy has a random position (y_i, z_i) on the inlet plane

- Each eddy is convected through the inlet plane until it is not active anymore ($x_i > r_x$), then a new one is regenerated at $x_i = -r_x$
Synthetic Eddy Method (SEM)

- **Formulation**

 - The eddy signal

 \[v_j(x,t) = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \varepsilon_i f_j(x - x_i(t)) \]

 - \(N = \text{number of vortices} \)
 - \(\varepsilon_i = \pm 1 \)

 - Rescaling

 \[u_i(x,t) = U_i(x) + a_{ij}(x) \ v_j(x,t) \]

 - \((a_{ij}(x)) \) Choleski decomposition of \((R_{ij}(x)) \)
 - (by construction, not computed)
Synthetic Eddy Method (SEM)

- **Signal characteristics**
 - Mean velocity and Reynolds stresses profiles
 - Autocorrelation function and energy spectrum imposed by shape function
 \[R_{11}(r) = \langle f_1(x) f_1(x + r) \rangle \]
 - Low computational cost due to limited number of eddies
 - Divergence free inlet condition with divergence free shape functions

- **Free parameters**
 - Length and time scales (*tuning is objective of current work*)
 - Shape function of eddies (*tuning is objective of current work*)
Spatially Decaying Isotropic Turbulence

• Parameters
 – $U_c = 20$, $k = 3/2$, $\nu = 10^{-4}$

• Mesh
 – $L_x \times L_y \times L_z = 6\pi \times 2\pi \times 2\pi$
 – $N_x \times N_y \times N_z = 192 \times 64 \times 64$ cells

• Numerical Procedure
 – Finite volume unstructured incompressible code: Code_Saturne
 – Smagorinsky model with Cs = 0.18

• Tests
 – 1) Compare methods, 2) Size of eddies, 3) Shape of eddies
HIT: Methods inlet

1) ... Random method
2) ___ SEM with 3D isotropic spots \(f(r) \) gaussian
3) - - - DIG (gaussian filter)
4) -.-.- SPE (\(k^2 \exp \left(-k^2/k_0^2\right) \) spectrum)

\[
\begin{align*}
\begin{bmatrix}
-k^2 & 0 \\
0 & -k^2
\end{bmatrix}
\end{align*}
\]

3D spots approach

\(f(r) \)

\(E(k) \)

\(k \)

\(k_0 \)
HIT: Methods results

\[S_k \]

\[n_x \]

\[k \]

\[E_{11}(k_1) \]

\[k_1^{-5/3} \]
HIT: Eddies Size

1) … Random method
2) - - - SEM with 3D isotropic spots (small)
3) ___ SEM with 3D isotropic spots (medium)
4) - .- . - SEM with 3D isotropic spots (big)
HIT: Eddies Shape

1) ... SEM with 3D isotropic spots (gaussian)
2) - - - SEM with 3D vortices (gaussian)
3) ___ SEM with 3D isotropic spots (model function)
HIT: Shape results

$E_{11}(k_1)$

$\kappa_1^{-5/3}$

SEM model shape function

SEM Spot Gauss.
SEM Vortices
SEM Spot Model Func.
Channel Flow Re*=395

- **Mesh**
 - $Nx \times Ny \times Nz = 160 \times 30 \times 30$ cells
 - $\Delta x^+ \approx 60$, $\Delta z^+ \approx 40$, $\Delta y^+_{\text{min}} \approx 1$
 - inlet/outlet b.c.

- **Numerical Procedure**
 - *Code_Saturne*
 - Smagorinsky model $C_S = 0.065$
 - Precursor periodic channel flow, statistics are fed into synthetic methods
 - All inflow data have same mean and Reynolds stresses profiles
Channel: Methods results

Q Contours

RAND

PREC

SPECL02

SEML02
Channel: Methods results

\[
\frac{c_f}{c_{f_0}}
\]

\[
\bar{u}^2
\]

\[
\bar{uv}
\]
Channel: Length-scale results

SEML01 Small spots

SEML02 Medium spots

SEML04 Large spots
Channel: Shape results

- SEM Medium Spots (x x x)
- SEM with 3D Vortices (___)
- SEM with Wall Model (---)

In the centre

\[l = \max(\Delta z, k^{3/2} / \varepsilon) \]

At the wall

Wall model approach
Conclusions & Future Works

• SEM gives good results compared to other synthetic methods

• Influence of the length-scale of the inflow

• How to improve the SEM
 – Better modelisation of the large scales?
 – Better modelisation of the small scales, wavelet analysis