Development and Application of SST-SAS Turbulence Model in the DESIDER Project

Y. Egorov, F. Menter
ANSYS Germany
yury.egorov@ansys.com
Outline

• Scale-Adaptive Simulation (SAS) concept
• SST-SAS turbulence model
• Aerodynamic applications
 – NACA0021 airfoil beyond stall
 – Delta wing
 – Full aircraft configuration
 – 3-D acoustic cavity
SAS concept

- **URANS**: unphysical single mode unsteady behaviour
- **LES**: too expensive
- **DES**:
 - 1st industrial model of high Re flows with LES content
 - Explicit mix of RANS & LES \rightarrow grid sensitivity
- **SAS**: provides URANS with LES content in unsteady regions
• **Two scales** required for statistical description

- **L, T**

- **Two equations → two scales?**
SAS concept. 2-eq RANS models

- k-ω model
- One local scale: S
- 2nd scale:
 - Shear layer thickness via diffusion: $L = \kappa \cdot y$, $L = \delta$
 - Too dissipative to resolve the energy cascade
 - Homogeneous turbulence, frozen LES velocity field:

No diffusion → **Contradiction:**

\[
\frac{Dk}{Dt} = \nu_t \left(S^2 - c_\mu \omega^2 \right) + \text{Diff} \left(k \right)
\]

\[
\frac{D\omega}{Dt} = \alpha S^2 - \beta \omega^2 + \text{Diff} \left(\omega \right)
\]

\[
S^2 = c_\mu \omega^2
\]

\[
\alpha S^2 = \beta \omega^2
\]
• Rotta’s transport eq. for spatial correlation-based L
• 2^{nd} scale from $\partial^2 U/\partial y^2 \rightarrow$ von Karman length scale
• New RANS model for k and $\Phi = \sqrt{kL}$

\[
\frac{D\Phi}{Dt} = \frac{\Phi}{k} P_k \times \left[\zeta_1 - \zeta_2 \left(\frac{L}{L_{vK}} \right)^2 \right] - \zeta_3 k + \text{Diff}(\Phi)
\]

\[
P_k = \nu_t S^2, \quad L_{vK} = \kappa S / |\nabla^2 U|
\]

• Two natural local scales: S and L_{vK}
SAS concept. SAS and RANS

- \(U(y) = U_0 \sin\left(\frac{2\pi \cdot y}{\lambda}\right) \), \(\lambda \) - natural scale, ignored by RANS

- Two domains:
 \(\delta = 4\lambda \)
 \(\delta = 8\lambda \)

- RANS:
 \(L \sim \delta \)

- SAS:
 \(L \sim \lambda \)
SAS concept. SAS and DES

- DES enforces LES-behaviour via explicit grid influence
- SAS detects resolved structures and adjusts accordingly

DES: RANS LES based on Δ

SAS: RANS “LES” based on L_{vK}
SAS concept definition

- SAS: 2nd flow scale in the source terms typically via 2nd velocity derivative

- Requirements:
 - Proper \textbf{RANS performance} in stable flow region
 - Break-up of large unsteady structures into a \textit{turbulent spectrum}
 - Proper energy dissipation at small scale (\textit{high wave number damping})

No grid & time step dependence

Based on the grid spacing Δ
SST-SAS turbulence model

- Experimental k-Φ model
- Transformation to k-$\omega \rightarrow$ SST-SAS model

\[\frac{Dk}{Dt} = \nu_t \left(S^2 - c_\mu \omega^2 \right) + \text{Diff}(k) \]

\[\frac{D\omega}{Dt} = \alpha S^2 - \beta \omega^2 + Q_{\text{SAS}} + \text{Diff}(\omega) + \frac{2 \cdot (1 - F)}{\sigma_{\omega^2 \omega}} \nabla k \nabla \omega \]

\[Q_{\text{SAS}} = \max \left[\zeta_2 \kappa S^2 \left(\frac{L}{L_{vK}} \right)^2 - C \cdot \frac{2k}{\sigma_\Phi} \max \left(\frac{\left| \nabla \omega \right|^2}{\omega^2}, \frac{\left| \nabla k \right|^2}{k^2} \right) , 0 \right] \]
SST-SAS turbulence model

- Decay of isotropic turbulence

High wave number damping in SAS:
- off
- on
- LES

Turbulence length scale / grid cell size

Ek

- Experiment
- LES, Cs=0.215
- k-epsilon
- SST-SAS, Lvk limiter
- SST-SAS, no Lvk limiter
NACA0021 airfoil beyond stall

- NACA0021 at 60° AoA, experiment by Swalwell et al., 2003
- Re = 2.7 \cdot 10^5, low Mach number, domain span-size 4 chords
- O-grid: courtesy of NTS, Russia, 1.9 million elements, $y^+ \approx 1$

Contours of $L / \Delta \in [0, 0.5]$

Isosurface of $Q = \Omega^2 - S^2$
NACA0021 airfoil beyond stall

- Mean values and PSD spectra of forces

<table>
<thead>
<tr>
<th></th>
<th>C_L</th>
<th>C_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>SST-SAS</td>
<td>0.915</td>
<td>1.484</td>
</tr>
<tr>
<td>Experiment</td>
<td>0.931</td>
<td>1.517</td>
</tr>
</tbody>
</table>

Mean pressure

PSD of C_L

PSD of C_D
Delta wing

- Sweep angle 76°, experiment by Laschka et al., 1995
- AoA = 35°, Re = 1.07 · 10^6, low Mach number
• Hybrid unstructured grid, 50 million elements, \(y^+ \approx 0.5 \)
 – Courtesy of EADS Deutschland GmbH, Military Air Systems
Delta wing

- Delayed bursting of vortices predicted: numerical diffusion?
Full aircraft configuration

- Delta-canard FA-5, exp. by Laschka et al., 1995
- \(\text{AoA} = 15^\circ, \text{Re} = 2.78 \cdot 10^6 \), low Mach number
- Hybrid unstructured grid, 36 million elements, \(y^+ \approx 0.8 \)
 - Courtesy of EADS Deutschland GmbH, Military Air Systems
 - Half of the airplane, symmetry BC
Full aircraft configuration

- SAS vs. URANS
Full aircraft configuration

- Resolution details

L / Δ
Full aircraft configuration

- Cross planes at $x/c = 0.2, 0.4, 0.6, 0.8, 1$

<table>
<thead>
<tr>
<th>U/U_0</th>
<th>Experiment</th>
<th>SST-SAS</th>
</tr>
</thead>
</table>

| Resolved+Modelled TKE/U_0^2 | Experiment | SST-SAS |

© 2007 ANSYS, Inc. All rights reserved.
3-D acoustic cavity

- M219 test cavity, exp. by QinetiQ, Henshaw, 2000
- Shallow cavity: Length × Width × Depth = 5 × 1 × 1, 1 = 4"
- \(\text{Re}_D = 1.37 \times 10^6 \), \(M_\infty = 0.85 \) – local transonic zones
- Coarse grid, 1.1 million elements
- 90 \(\Delta t \) per convective unit
- 100 units run for statistics
3-D acoustic cavity

- Resolved turbulent structures
- Pressure spectrum at cavity bottom near the downstream wall (K29)
Other DESIDER tests simulated

- Bump in a duct, experiment by ONERA
- Generic car mirror, exp. by Höld et al., 1999