*********************************************************************
*********************************************************************
********                                                     ********
********              "Establishment of                      ********
********    the Direct Numerical Simulation Data Bases of    ********
********          Turbulent Transport Phenomena"             ********
********                                                     ********
********            Co-operative Research                    ********
********                No. 02302043                         ********
********                                                     ********
********       Supported by the Ministry of Education,       ********
********               Science and Culture                   ********
********                                                     ********
********                   1990 - 1992                       ********
********                                                     ********
********             <Research Collaborators>                ********
********                                                     ********
********               N. Kasagi (Organizer)                 ********
********    K. Horiuchi, Y. Miyake, T. Miyauchi, Y. Nagano   ********
********                                                     ********
*********************************************************************
*********************************************************************

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++                  << CAUTION >>                      ++++++++
++++++++                                                     ++++++++
++++++++  All rights are reserved by the computors of each   ++++++++
++++++++  data base.  No part of the data described herein   ++++++++
++++++++  may be represented or otherwise used in any form   ++++++++
++++++++  without fully referring to this data base and      ++++++++
++++++++  the literature cited at the end of the data base.  ++++++++
++++++++  The original data base will be revised  without    ++++++++
++++++++  notice, whenever necessary.  Future revisions      ++++++++
++++++++  will be notified to those who register by writing  ++++++++
++++++++  to Research Organizer:                             ++++++++
++++++++                                                     ++++++++
++++++++        N. Kasagi                                    ++++++++
++++++++        Department of Mechanical Engineering         ++++++++
++++++++        The University of Tokyo                      ++++++++
++++++++        Bunkyo-ku, Tokyo 113                         ++++++++
++++++++        Japan.                                       ++++++++
++++++++                                                     ++++++++
++++++++        December 1990                                ++++++++
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

============ this data base begins from this line ===================

Test case:       Homogeneous Isotropic Flow with Passive Scalar Diffusion

Code number:     IS____UT.HM1

Date of Release: March 20, 1991

Computors:      T. Miyauchi, M. Tanahashi and T. Ishizu
                Department of Mechanical Engineering Science
                Tokyo Institute of Technology
                Meguro-ku, Tokyo 152

Nomenclature:
        E:      spectral distribution of kinetic energy; cm**3/s**2,
                E(k) = 2 x pai x k**2 x ui(k) x conjg(ui(k)) (i=1,2,3)
                repeated summation is used for i
        Ene:    kinetic energy per unit mass (space averaged); cm**2/s**2,
        Ens:    enstrophy; 1/s**2
        Et:     spectral distribution of scalar fluctuation; cmK**2,
                Et(k) = 2 x pai x k**2 x dT(k) x conjg(dT(k))
                dT = fluctuation from mean temperature
        <f>:    spatialy averaged value of variable f
        Fi:     flatness factor of ui
        Fdi:    flatness factor of i-derivative of ui
        Int:    mean square value of temperature fluctuation; K**2
        k:      absolute value of wave number; 1/cm
        L:      reference length = 2 x pai(fundamental wave length); cm
        Lu:     integral scale of u1 in x1-derection; cm,
                 Lu = the integral of R11 from zero to pai 
        Lt:     integral scale of T in x1-direction; cm,
                 Lt = the integral of Rtt from zero to pai 
        Ramdu:  Taylor micro scale for u1; cm
        Ramdt:  Taylor micro scale for T; cm
        Re_ramd:micro scale Reynolds number U*Ramdu/Ve 
        Rtt:    two-point auto-correlation coefficient of scalar fluctuation
                 Rtt = <T(x1) x T(x1+tau)> / <T(x1)**2>
        Rij:    two-point correlation coefficient of ui and uj
                 Rij = <ui(x1) x uj(x1+tau)>
                       /sqrt(<ui(x1)**2>)/sqrt(<uj(x1)**2>)
        Rut:    two-point correlation coefficient of u1 and T
                 Rut = <u1(x1) x T(x1+tau)>
                       /sqrt(<u1(x1)**2>)/sqrt(<T(x1)**2>)
        Si:     skewness factor of ui
        Sdi:    skewness factor of i-th derivative of ui
        tau:    lag in x1-direction; cm
        T:      temprature; K
        TS:     time step; s,
                1TS=0.005
        ui:     velocity in xi-direction; cm/s
        U:      reference velocity = root mean square velocity
                fluctuation at initial stage; cm/s
        Ve:     kinematic viscosity; cm**2/s

1. Description of Flow Field

The flow field simulated is homogeneous isotropic  turbulence
with temperature diffusion.  Temperature fluctuation is not so 
large so that temperature can be assumed to be a passive scalar.
We simulated two cases with Prandtl numbers of 0.20 and 0.71.

2. Numerical Method

Governing Equation: time dependent Navier Stokes equation 
(rotational form) and energy conservation equation.

Discretization method:spectral method = 64 x 64 x 64 Fourier modes
in the x1-,x2-,x3-direction.

Aliasing treatment:nonlinear term is computed in physical space
by using padding method.

Time integration:second order Adams-Bashforth scheme for the 
nonlinear term, Backward-Euler scheme for the pressure term, 
and Crank-Nicolson scheme for the viscous and diffusion terms.

Size of computational box:(2 x pai) x (2 x pai) x (2 x pai)

Initial spectral distribution: E(k)=0.038 x k**4 x exp(-0.14 x k**2)
                               Et(k)=0.40 x k**2 x exp(-0.10 x k**2)

Error in continuity equation = Max{abs(div u)}: less than 1.0E-15

Computer:HITAC-S820/80 at the Computer Center of the University of Tokyo

3. Flow condition
       Re = U*L/Ve =309

4. Numerical data of Velocity Field

4.1 Kinetic Energy per Unit Mass
    TS          Ene(TS)   
    0          1.22052E-1       
    100        1.05959E-1       
    200        9.10524E-2       
    300        7.75190E-2
    400        6.58436E-2
    500        5.60734E-2
    600        4.80062E-2

4.2 3-D Energy Spectrum
TS=0
   k           E(k)            
  1.41421     1.00360E-1       
  2.00000     3.10754E-1       
  3.00000     8.31843E-1       
  4.00000     9.14860E-1       
  5.00000     6.44100E-1
  6.00000     3.23011E-1
  7.00000     9.38450E-2
  8.06225     1.85709E-2
TS=200
   k           E(k)            
  1.00000     5.55352E-4       
  2.00000     2.40827E-1       
  3.00000     7.06399E-1       
  4.00000     4.35846E-1       
  5.00000     2.82298E-1       
  6.00000     1.74570E-1       
  7.00000     1.25323E-1       
  8.00000     5.20969E-3       
  9.00000     6.37578E-2
  10.0000     1.13119E-2
  15.0000     2.32024E-3
  20.0000     2.74516E-2
  25.0000     1.44430E-5
  30.0000     1.20502E-6
  35.0000     2.74168E-7
  40.1249     2.04499E-8
  45.0222     1.05743E-9

TS=400
   k           E(k)            
  1.00000     1.93256E-3       
  2.00000     1.78107E-1       
  3.00000     5.10856E-1       
  4.00000     7.11306E-2       
  5.00000     2.05873E-1       
  6.00000     1.01789E-1       
  7.00000     1.54639E-1       
  8.00000     3.47021E-3       
  9.00000     5.38501E-2
  10.0000     9.67449E-3
  15.0000     2.98650E-3
  20.0000     4.92136E-5
  25.0000     1.81891E-5
  30.0000     1.54466E-6
  35.0000     2.12039E-7
  40.1249     2.19996E-8
  45.0555     1.44693E-9

TS=600
   k           E(k)            
  1.00000     3.46109E-3       
  2.00000     1.29655E-1       
  3.00000     3.61931E-1       
  4.00000     1.71386E-2       
  5.00000     1.49187E-1       
  6.00000     6.01920E-2       
  7.00000     9.58069E-2       
  8.00000     3.81687E-3       
  9.00000     3.20410E-2
  10.0000     5.81278E-3
  15.0000     1.72995E-3
  20.0000     1.88906E-5
  25.0000     6.13948E-6
  30.0000     3.91979E-7
  35.0000     4.12451E-8
  40.1249     3.64087E-9
  42.7317     1.09891E-9

4.3 Two-point Velocity Correlations (x1-direction)
4.3.1 Two-point Auto-correlation of u1
TS=0
   tau         R11(tau)        
  0.00000     1.00000          
  3.92699E-1  8.01477E-1       
  7.85396E-1  4.16887E-1       
  1.17809     1.42585E-1       
  1.57079     2.34320E-2       
  1.96349    -1.39152E-2
  2.35619    -1.12421E-2
  2.74889     1.01116E-2
  3.04341     2.15049E-2

TS=200
   tau         R11(tau)        
  0.00000     1.00000          
  3.92699E-1  7.82555E-1       
  7.85396E-1  3.98984E-1       
  1.17809     1.22451E-1       
  1.57079    -4.69710E-3       
  1.96349    -3.47308E-2
  2.35619    -3.68531E-2
  2.74889    -3.75797E-2
  3.04341    -3.68706E-2

TS=400
   tau         R11(tau)        
  0.00000     1.00000          
  3.92699E-1  7.77175E-1       
  7.85396E-1  4.09594E-1       
  1.17809     1.53880E-1       
  1.57079     2.83990E-2       
  1.96349    -1.87648E-2
  2.35619    -4.80518E-2
  2.74889    -7.61841E-2
  3.04341    -8.72665E-2

TS=600
   tau         R11(tau)        
  0.00000     1.00000          
  3.92699E-1  7.96694E-1       
  7.85396E-1  4.58991E-1       
  1.17809     2.21358E-1       
  1.57079     9.09038E-2       
  1.96349     1.67314E-2
  2.35619    -3.34679E-2
  2.74889    -6.46255E-2
  3.04341    -7.46684E-2
4.3.2 Two-point Cross-correlation of u1 and u2
TS=0
   tau         R12(tau)        
  0.00000     -2.52921E-3     
  3.92699E-1   1.36380E-2     
  7.85396E-1   1.95040E-2     
  1.17809     -7.93034E-3     
  1.57079     -3.07035E-2     
  1.96349     -2.27267E-2
  2.35619     -1.34261E-2
  2.74889     -2.45913E-2
  3.04341     -4.06192E-2

TS=200
   tau         R12(tau)        
  0.00000     -9.15311E-3      
  3.92699E-1  -1.66495E-3      
  7.85396E-1  -1.16247E-2      
  1.17809     -3.88549E-2      
  1.57079     -6.18614E-2      
  1.96349     -6.62977E-2
  2.35619     -6.43712E-2
  2.74889     -6.87116E-2
  3.04341     -7.34356E-2

TS=400
   tau         R12(tau)        
  0.00000      4.86372E-3      
  3.92699E-1   1.88666E-3      
  7.85396E-1  -9.99898E-3      
  1.17809     -9.54547E-3      
  1.57079     -1.45949E-2      
  1.96349     -3.48256E-2
  2.35619     -4.74712E-2
  2.74889     -4.52225E-2
  3.04341     -4.54916E-2

TS=600
   tau         R12(tau)        
  0.00000      1.57828E-2      
  3.92699E-1  -7.63564E-4      
  7.85396E-1  -3.18279E-3      
  1.17809      2.74346E-2      
  1.57079      3.79977E-2      
  1.96349      1.39818E-2
  2.35619     -1.67513E-2
  2.74889     -2.57774E-2
  3.04341     -2.45575E-2

4.4 Enstrophy
    TS         Ens(TS)    
    0          1.72438          
    100        1.53886          
    200        1.43236          
    300        1.26384
    400        1.06958   
    500        8.87075E-1
    600        7.30283E-1

4.5 Flatness of u1
    TS          F1(TS)    
    0          3.22735          
    100        3.17413          
    200        3.09192          
    300        3.06572
    400        3.07073
    500        3.06446
    600        3.03757

4.6 Flatness of x1 derivative of u1
    TS         Fd1(TS)    
    0          3.00407          
    100        3.21584          
    200        3.63375          
    300        3.86776
    400        3.90112
    500        3.81612
    600        3.71646

4.7 Skewness of u1
    TS          S1(TS)    
    0          9.22152E-2       
    100        9.05295E-2       
    200        7.62247E-2       
    300        5.84252E-2
    400        4.57007E-2
    500        4.52819E-2
    600        5.52007E-2

4.8 Skewness of x1 derivative of u1
    TS          Sd1(TS)   
    0          1.24398E-2       
    100       -3.71311E-1       
    200       -5.11329E-1       
    300       -5.42004E-1
    400       -5.48522E-1
    500       -5.45802E-1
    600       -5.37426E-1

4.9 Taylor Micro Scale of u1
    TS         Ramdu   
    0          5.89143E-1       
    100        5.78069E-1       
    200        5.48347E-1    
    300        5.33189E-1
    400        5.33179E-1
    500        5.43749E-1
    600        5.55990E-1

4.10 Micro Scale Reynolds Number
    TS         Re_ramda   
    0          29.1078          
    100        26.6111          
    200        23.4000          
    300        20.9942
    400        19.3484
    500        18.2092
    600        17.3492

4.11 Integral Scale of u1
    TS          Lu   
    0          7.70470E-1
    100        7.46703E-1
    200        6.90412E-1
    300        6.70576E-1
    400        6.96117E-1
    500        7.44976E-1
    600        8.00514E-1

5. Numerical data of Scalar Field

5.1 Averaged Intensity of Scalar fluctuation

5.1.1 Prandtl Nnmber = 0.20
    TS          Int(TS)    
    0          3.02647E-1       
    100        1.88012E-1       
    200        1.25224E-1       
    300        8.70439E-2
    400        6.23675E-2
    500        4.57898E-2
    600        3.43929E-2

5.1.2 Prandtl Number = 0.71
    TS          Int(TS)    
    0          3.02647E-1       
    100        2.59492E-1       
    200        2.16989E-1       
    300        1.77294E-1
    400        1.43593E-1
    500        1.16202E-1
    600        9.44040E-2

5.2 Spectrum of fluctuation

5.2.1 Prandtl Nnmber = 0.20
TS=0
   k           Et(k)           
  1.41421     4.02415E-1       
  2.00000     6.70266E-1       
  3.00000     9.92101E-1       
  4.00000     7.48541E-1       
  5.00000     5.38204E-1
  6.00000     2.72123E-1
  7.00000     8.73092E-2
  7.81024     3.59780E-2

TS=200
   k           Et(k)           
  1.00000     1.05466E-3       
  2.00000     3.36166E-1       
  3.00000     3.67973E-1       
  4.00000     6.25681E-2       
  5.00000     6.43270E-2       
  6.00000     2.94095E-2       
  7.00000     2.19399E-2       
  8.00000     5.00320E-4       
  9.00000     8.67487E-3
  10.0000     9.70602E-4
  15.0000     6.25349E-5
  20.0000     1.95121E-7
  25.0000     2.32717E-8
  30.0000     1.23606E-9
  31.0644     1.19609E-9

TS=400
   k           Et(k)           
  1.00000     2.55930E-3       
  2.00000     1.44344E-1       
  3.00000     1.44038E-1       
  4.00000     1.13994E-2       
  5.00000     1.51787E-2       
  6.00000     5.00846E-3       
  7.00000     8.01863E-3       
  8.00000     4.40039E-4       
  9.00000     2.17536E-3
  10.0000     4.03067E-4
  15.0000     1.64498E-5
  20.0000     4.98806E-8
  25.0000     4.28694E-9
  28.4604     1.20757E-9

TS=600
   k           Et(k)
  1.00000     3.38334E-3       
  2.00000     6.41323E-2       
  3.00000     5.92391E-2       
  4.00000     2.47813E-3       
  5.00000     9.64493E-3       
  6.00000     2.90652E-3       
  7.00000     2.23367E-3       
  8.00000     1.82921E-4       
  9.00000     7.40450E-4
  10.0000     1.20997E-4
  15.0000     3.92064E-6
  20.0000     1.22954E-8
  25.0000     1.06088E-9
  26.2488     1.23265E-9

5.2.2 Prandtl Number = 0.71
TS=0
   k           Et(k)           
  1.41421     4.02415E-1       
  2.00000     6.70266E-1       
  3.00000     9.92101E-1       
  4.00000     7.48541E-1       
  5.00000     5.38204E-1
  6.00000     2.72123E-1
  7.00000     8.73092E-2
  7.81024     3.59780E-2

TS=200
   k           Et(k)           
  1.00000     1.29962E-3       
  2.00000     4.39541E-1       
  3.00000     6.68757E-1       
  4.00000     1.78571E-1       
  5.00000     2.47688E-1       
  6.00000     1.62595E-1       
  7.00000     1.52707E-1       
  8.00000     2.84070E-3       
  9.00000     1.21958E-1       
  10.0000     2.15648E-2
  15.0000     5.25002E-3
  20.0249     6.66627E-4
  25.0000     3.16783E-5
  30.0000     1.91073E-6
  35.0000     3.52409E-7
  40.1249     2.62925E-8
  45.0222     1.06691E-9
  45.4972     1.07276E-9

TS=400
   k           Et(k)           
  1.00000     3.63503E-3       
  2.00000     2.30373E-1       
  3.00000     4.05406E-1       
  4.00000     5.89957E-2       
  5.00000     9.92578E-2       
  6.00000     4.18847E-2       
  7.00000     1.35679E-1       
  8.00000     1.25409E-2       
  9.00000     7.35297E-2       
  10.0000     1.78520E-2
  15.0000     4.28378E-3
  20.0249     6.60598E-4
  25.0000     1.95621E-5
  30.0000     1.92381E-6
  35.0000     1.98541E-7
  40.1249     1.09693E-8
  43.7035     1.20398E-9

TS=600
   k           Et(k)           
  1.00000     5.30288E-3       
  2.00000     1.18290E-1       
  3.00000     2.31282E-1       
  4.00000     1.85658E-2       
  5.00000     8.56520E-2       
  6.00000     3.71559E-2       
  7.00000     6.90075E-2       
  8.00000     4.60320E-3       
  9.00000     4.70612E-2       
  10.0000     9.06811E-3
  15.0000     2.33428E-3
  20.0249     2.38316E-4
  25.0000     9.34227E-6
  30.0000     4.70629E-7
  35.0000     3.57281E-8
  40.1249     4.17494E-9
  42.7317     1.11619E-9

5.3 Two-point Scalar Correlation (x1-direction)
5.3.1 Two-point Auto-correlation of T
5.3.1.1 Prandtl Nnmber = 0.20
TS=0
   tau         Rtt(tau)        
  0.00000     1.00000          
  3.92699E-1  7.65198E-1       
  7.85396E-1  3.80563E-1       
  1.17809     1.96080E-1       
  1.57079     1.29589E-1       
  1.96349     3.49275E-2
  2.35619    -4.35902E-2
  2.74889    -2.45681E-2
  3.04341     7.40358E-3

TS=200
   tau         Rtt(tau)        
  0.00000     1.00000          
  3.92699E-1  8.42460E-1       
  7.85396E-1  5.47156E-1       
  1.17809     3.06791E-1       
  1.57079     1.36871E-1       
  1.96349     5.10942E-3
  2.35619    -9.71935E-2
  2.74889    -1.62158E-1
  3.04341    -1.82194E-1

TS=400
   tau         Rtt(tau)        
  0.00000     1.00000          
  3.92699E-1  8.64442E-1       
  7.85396E-1  5.92639E-1       
  1.17809     3.41050E-1       
  1.57079     1.37506E-1       
  1.96349    -3.38250E-2
  2.35619    -1.80986E-2
  2.74889    -2.89195E-1
  3.04341    -3.27239E-1

TS=600
   tau         Rtt(tau)        
  0.00000     1.00000          
  3.92699E-1  8.75289E-1       
  7.85396E-1  6.12474E-1       
  1.17809     3.49222E-1       
  1.57079     1.18035E-1       
  1.96349    -8.43321E-2
  2.35619    -2.53471E-2
  2.74889    -3.74504E-1
  3.04341    -4.17435E-1

5.3.1.2 Prandtl Number = 0.71
TS=0
   tau         Rtt(tau)        
  0.00000     1.00000          
  3.92699E-1  7.65198E-1       
  7.85396E-1  3.80563E-1       
  1.17809     1.96080E-1       
  1.57079     1.29589E-1       
  1.96349     3.49275E-2
  2.35619    -4.35902E-2
  2.74889    -2.45681E-2
  3.04341     7.40358E-3

TS=200
   tau         Rtt(tau)        
  0.00000     1.00000          
  3.92699E-1  7.41081E-1       
  7.85396E-1  4.01289E-1       
  1.17809     2.12377E-1       
  1.57079     1.02886E-1       
  1.96349     1.18153E-2
  2.35619    -6.33214E-2
  2.74889    -1.08048E-1
  3.04341    -1.16941E-1

TS=400
   tau         Rtt(tau)        
  0.00000     1.00000          
  3.92699E-1  7.23875E-1       
  7.85396E-1  3.89504E-1       
  1.17809     2.03907E-1       
  1.57079     8.73791E-2       
  1.96349    -9.34931E-3
  2.35619    -1.04056E-2
  2.74889    -1.84025E-1
  3.04341    -2.12603E-1

TS=600
   tau         Rtt(tau)        
  0.00000     1.00000          
  3.92699E-1  7.11879E-1       
  7.85396E-1  3.61104E-1       
  1.17809     1.74932E-1       
  1.57079     5.64651E-2       
  1.96349    -4.39034E-2
  2.35619    -1.39069E-1
  2.74889    -2.26159E-1
  3.04341    -2.66649E-1
5.3.2 Two-point Cross-correlation of u1 and T
5.3.2.1 Prandtl Number = 0.20
TS=0
   tau         Rut(tau)        
  0.00000     -1.44586E-2      
  3.92699E-1  -6.11074E-3      
  7.85396E-1  -1.33807E-2      
  1.17809     -4.25926E-2      
  1.57079     -6.47857E-2      
  1.96349     -5.59928E-2
  2.35619     -3.87882E-2
  2.74889     -4.49668E-2
  3.04341     -6.26223E-2

TS=200
   tau         Rut(tau)        
  0.00000     -1.04887E-3      
  3.92699E-1   8.77347E-4      
  7.85396E-1  -1.04764E-2     
  1.17809     -3.60806E-2      
  1.57079     -6.03131E-2      
  1.96349     -7.15026E-2
  2.35619     -7.54783E-2
  2.74889     -8.10526E-2
  3.04341     -8.68597E-2

TS=400
   tau         Rut(tau)        
  0.00000      1.92512E-2      
  3.92699E-1   1.03815E-2      
  7.85396E-1  -2.50776E-3      
  1.17809     -8.33401E-3      
  1.57079     -1.85051E-2      
  1.96349     -4.12017E-2
  2.35619     -6.19532E-2
  2.74889     -7.13868E-2
  3.04341     -7.65273E-2
              
TS=600
   tau         Rut(tau)        
  0.00000      2.80603E-2      
  3.92699E-1   1.27637E-2      
  7.85396E-1   7.49954E-3      
  1.17809      1.89814E-2      
  1.57079      1.81352E-2      
  1.96349     -6.40816E-3
  2.35619     -3.68489E-2
  2.74889     -5.48986E-2
  3.04341     -6.30438E-2

5.3.2.2 Prandtl Number = 0.71
TS=0
   tau         Rut(tau)        
  0.00000     -1.44586E-2      
  3.92699E-1  -6.11074E-3      
  7.85396E-1  -1.33807E-2      
  1.17809     -4.25926E-2      
  1.57079     -6.47857E-2      
  1.96349     -5.59928E-2
  2.35619     -3.87882E-2
  2.74889     -4.49668E-2
  3.04341     -6.26223E-2

TS=200
   tau         Rut(tau)        
  0.00000     -9.15311E-3      
  3.92699E-1  -1.66495E-3      
  7.85396E-1  -1.16247E-2      
  1.17809     -3.88549E-2      
  1.57079     -6.18614E-2      
  1.96349     -6.62977E-2
  2.35619     -6.43712E-2
  2.74889     -6.87116E-2
  3.04341     -7.34356E-2

TS=400
   tau         Rut(tau)        
  0.00000      4.86372E-3      
  3.92699E-1   1.88666E-3      
  7.85396E-1  -9.99898E-3      
  1.17809     -9.54547E-3      
  1.57079     -1.45949E-2      
  1.96349     -3.48256E-2
  2.35619     -4.74712E-2
  2.74889     -4.52225E-2
  3.04341     -4.54916E-2

TS=600
   tau         Rut(tau)        
  0.00000      1.57828E-2      
  3.92699E-1  -7.63564E-4      
  7.85396E-1  -3.18279E-3      
  1.17809      2.74346E-2      
  1.57079      3.79977E-2      
  1.96349      1.39818E-2
  2.35619     -1.67513E-2
  2.74889     -2.57774E-2
  3.04341     -2.45575E-2

5.4 Taylor Micro Scale of T
5.4.1 Prandtl Number = 0.20
    TS         Ramdt   
    0          5.30994E-1
    100        6.01636E-1
    200        6.25611E-1
    300        6.89005E-1
    400        7.10113E-1
    500        7.27146E-1
    600        7.45882E-1

5.4.1 Prandtl Number = 0.71
    TS         Ramdt   
    0          5.30994E-1
    100        5.09580E-1
    200        4.71441E-1
    300        4.56420E-1
    400        4.49209E-1
    500        4.44183E-1
    600        4.43962E-1

5.5 Integral Scale of T
5.5.1 Prandtl Number = 0.20
    TS          Lt   
    0          7.63122E-1
    100        8.24965E-1
    200        8.19134E-1
    300        7.85126E-1
    400        7.37302E-1
    500        6.89601E-1
    600        6.48297E-1

5.5.1 Prandtl Number = 0.71
    TS          Lt   
    0          7.63122E-1
    100        7.58729E-1
    200        7.19570E-1
    300        6.79317E-1
    400        6.28680E-1
    500        5.78482E-1
    600        5.36436E-1


6. References

6.1 Miyauchi T. and Ishizu T., "Direct Numerical Simulation of 
Homogeneous Isotropic Turbulence. - Decay of passive  scalar fluctuation",
Prepr. of Jpn. Soc. Mech. Eng. No.914-2, pp. 166-168,
(Kansaishibu Dai66ki Teijisoukai), (1991).


(EOF)