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Abstract

A series of large-eddy simulations has been performed of a at-plate bound-

ary layer undergoing transition to turbulence under free-stream turbulence at

levels of 3% and 6%. The properties of the simulated transition match those

found experimentally: not only is the position and rate of transition in agree-

ment with available data, but the mechanism of transition also appears to

correspond closely, since disturbances seen in the laminar layer prior to tran-

sition are found in our simulations. We have also carried out some numerical

experiments that indicate the key inuence of the wall-normal component of

free-stream turbulence intensity in provoking transition under turbulence.

Using the most reliable of our simulations, data has been gathered that

allows the computation of all terms in the derived equations for the Reynolds

stresses. Aspects of these balances are presented that allow new insights into

the physical mechanisms at work, and the possible reason for poor predic-

tions by many closure models. The importance of the wall-normal component

of free-stream turbulence is con�rmed. Wall damping functions for popular

closure models used to predict transition have also been extracted from the

large-eddy simulation, and are compared with popular two-equation closure

approximations, showing that the most successful model for predicting this

ow has some advantage over more recent models.
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4 1. INTRODUCTION

1 Introduction

The receptivity of the laminar boundary-layer to turbulence in the free stream is

of major importance in turbomachinery ows, but is still only partly understood.

It is known that this type of boundary-layer transition is a�ected by properties

of the free-stream turbulence such as its anisotropy and length scale as well as

its intensity. When the free-stream turbulence level is zero or very low, the tran-

sition occurs as two-dimensional Tollmien-Schlichting (T.S.) waves develop three-

dimensional, nonlinear secondary instabilities which break down into turbulence.

At levels of free-stream turbulence above about 0.5 to 1%, transition to turbulence

becomes extremely rapid, and bypass transition takes place. The laminar bound-

ary layer thus has an inbuilt receptivity to destabilization by external free-stream

turbulence.

The natural transition of a at plate boundary layer with zero pressure gradient has

been simulated numerically by a number of workers, using either spectral methods

(see the review by Kleiser and Zang, 1991) or �nite di�erences (Fasel, Rist and Kon-

selmann, 1990). Spatial simulations of two-dimensional disturbance development in

Blasius ow were performed by Fasel (1976) and Murdock (1977). Three-dimensional

spatial simulations of boundary transition have only become possible fairly recently

owing to the computer speed and memory requirements, and usually periodic bound-

ary conditions and Fourier expansions are used in the spanwise direction. K-type

transition for the conditions of the experiment of Klebano� et al. (1962) was sim-

ulated by Murdock (1986), who employed the modi�ed vorticity/velocity-potential

equations and used Chebyshev polynomial expansions in the streamwise and nor-

mal directions. He was unable to follow transition beyond about the one-spike stage

since he used a high resolution on a domain extending over eight T.S. wavelength in

the streamwise direction. More recently, Fasel, Rist and Konzelmann (1990) have

simulated the early three-dimensional stages of both fundamental and subharmonic

transition by employing the Navier-Stokes equations in vorticity-velocity formula-

tion. Rist and Fasel (1991) have performed a numerical simulation of the vibrating-

ribbon experiment by Kachanov et al. (1985) using the same method, and obtained

good agreement between the simulation and the experiment. More recently Spalart

(1993) has looked at transition induced by suction devices. Rai and Moin (1991)

simulated boundary layer transition under turbulence in compressible ow using

�fth-order-accurate upwind-biased di�erences for the convective terms and sixth-

order-accurate central di�erences for the viscous terms. Their results indicated that

the essential features of the transition process are captured.

Most transition simulations are performed using a temporal approach. Simulations

of the fundamental type of transition in Blasius ow have been done by Orszag and

Patera (1983) and by Wray and Hussaini (1984). Zang and Hussaini (1987, 1990),

and Laurien and Kleiser (1989) have also studied the subharmonic type of transition.

Spalart and Yang (1987) simulated a mixed type of transition developing from a
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�nite-amplitude two-dimensional wave and low-amplitude three-dimensional random

disturbances. Generally numerical results are in good agreement with experimental

data.

It is usually assumed that for such a computation a high level of numerical accuracy

is required in order to reproduce the development of T.S. waves and their breakup

through secondary and tertiary instabilities. Bypass transition appears to be di�er-

ent. Earlier work by the authors (Yang and Voke 1991, 1992) has shown that since

the transition takes place early and rapidly, the detailed computation of the form of

the instabilities is not crucial. Relatively coarse meshes and low-order but strictly

conservative �nite-volume methods correctly predict the position and speed of tran-

sition, and the presence and magnitude of disturbances in the laminar boundary

layer prior to the eruption of true turbulence.

2 Methods

2.1 Finite-volume LES

The simulations have been prompted by the �nding that behaviour very similar

to bypass transition can be reproduced by conservative �nite-volume simulations

even on coarse meshes (Yang and Voke 1991), provided that the level of free-stream

turbulence is high, suggesting that the conservation properties of the simulation

algorithm are more important than the formal accuracy of the interpolations.

In the present work we continue to use the linear �nite-volume approach. The

method conserves momentum and mass to high accuracy volume by volume and

globally, and conserves each component (u

2

, v

2

and w

2

) of kinetic energy and hence

also the total ow kinetic energy to the same accuracy in the advection term, thus

ensuring that the removal of energy from the simulation takes place entirely via the

discrete approximation to the viscous term. These methods, which originated with

Lilly (1965) and Bryant (1966), were used by Deardor� (1970) and Schumann (1975)

in early large-eddy simulation (LES) studies, and continue to be used at present for

both direct simulation (Gavrilakis 1992) and LES.

The cases under study were the ERCOFTAC test case T3a and T3b (Savill 1992,

1993), in which a free-stream turbulence level of 3% or 6% is superimposed on a

parallel ow of U

0

= 9:6m=s. The free-stream disturbance decays at a known rate

(Roach and Brierley 1992), while the transition takes place rapidly underneath it.

There is a nominally zero pressure gradient since the boundary layer growth was

compensated in the experiments.

Transition of the at-plate boundary layer in the presence of free-stream turbulence
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(f.s.t.) has been investigated for both 3% to 6% u

0

=U at the leading edge. A true

large-eddy simulation (LES) was carried out using a subgrid-scale model similar to

that of Smagorinsky (1963) and Lilly (1967),

�

s

= (�c

s

)

2

q

2s

ij

s

ij

; (1)

modi�ed as described by Voke (1990),

�

e

= �

s

�

2�

n

[1� exp(�n�

s

=2�)]; (2)

to allow for low-Reynolds-number e�ects. The constant c

s

was set to 0:1, and n = 9.

The subgrid model was found to be almost inactive in the laminar region very close

to the wall, but had some inuence on the behaviour of the free-stream turbulence

and on the boundary layer in and downstream of transition.

2.2 Mesh resolution

The LES of transition under 6% f.s.t. was performed in a computational box ex-

tending from Re

x

= 6620 to Re

x

= 200000, or a total nominal length of 300mm,

equivalent to L

+

x

= 10138 in wall units. The lateral and vertical dimensions of the

box were L

z

= 20mm (L

+

z

= 676) and L

y

= 30mm (L

+

y

= 1014), and the overall

meshing was 127� 56� 48. These dimensions gave a resolution �

+

x

= 80, �

+

z

= 14,

and �

+

y

varying from 1 at the wall to 80 well beyond the boundary layer. The wall

units are based on the friction velocity just after transition is complete.

The other simulations were performed without the subgrid scale model, though the

resolution was not su�ciently high in any case to justify calling them fully resolved

or direct. The �ne simulation, also with 6% f.s.t. at inow, was performed in a

computational box of twice the length used for the LES (L

x

= 600mm, L

+

x

= 20317)

but the same lateral and vertical dimensions. The meshing was 255 � 56 � 48, so

that the grid resolution was identical to that used for the LES. The coarse mesh

simulations referred to later were performed in the double length box, with vertical

and lateral box sizes unchanged, and meshing of 255 � 32x � 16, giving �

+

x

= 80,

�

+

z

= 42, and �

+

y

varying from 1.4 to 122. Two simulations using 3% and 6%

f.s.t. were carried out at this resolution, and the numerical experiments discussed in

section 3.2 were also carried out at the same resolution. The time steps were �t

+

=

�tu

2

�

=� = 0:1656 for the �ne mesh simulation and the LES, and �t

+

= 0:3325 for

the coarse simulations. The Courant numbers in all simulations were maintained

below 0.25 and the viscous numbers were around 0.15.

The geometry of the computations is sketched in Figure 1, and the details of the

various runs and numerical experiments are summarised in Table 1. For comparison

with Roach and Brierley (1992) and other published work on these test problems,
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LES Fine Coarse

L

x

300mm 600mm 600mm

L

y

30mm 30mm 30mm

L

z

20mm 20mm 20mm

L

+

x

10138 20317 20317

L

+

y

1014 1014 1014

L

+

z

676 676 676

N

x

127 255 255

N

y

56 56 32

N

z

48 48 16

�

x

2.35mm 2.35mm 2.35mm

�

z

.417mm .417mm 1.25mm

�

+

x

80 80 80

�

+

y

1{80 1{80 1.4{122

�

+

z

14 14 42

Table 1: Meshing of the simulations

it is convenient to use the dimensional units mm and m/s and hence time units of

ms. The relationship between these units and the nominal viscous units, which are

based on the friction at a position just downstream of transition, is de�ned by

u

�

= 0:49m/s (3)

� = 0:0145mm

2

=ms (4)

Thus 1mm = 33:79�=u

�

and 1ms = 16:56�=u

2

�

. Reynolds numbers may also be

deduced using the above value of � and U

0

= 9:6m/s. Our results are given at

four x stations, at 25mm, 45mm, 95mm and 195mm, at which Re

x

= 16600, 29800,

62900, 129100 respectively.

2.3 Boundary conditions

The upstream boundary of the computation represented a point 10mm downstream

of the leading edge of the at plate (Re

x

= 6620). We imposed an appropriate

Blasius pro�le at the inow boundary, with the free-stream disturbances limited to

the region above y = 0:3mm. There was a smooth cuto� of free-stream disturbances

between y = 0:3mm and y = 0:65mm. The inowing f.s.t. was derived from separate

simulations (Figure 1) on matched meshes but without any solid lower surface, and

with pseudorandom disturbances at their inow superimposed on a uniform ow.

Velocity data were extracted from these simulations at x = 150mm, 50mm upstream

of the outow boundary of the simulations. These `precursor' simulations therefore

mimicked the behaviour of grid turbulence, generating more realistic f.s.t. for input

into the simulation of the boundary layer transition than the pseudorandom input
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f.s.t. used by Yang and Voke (1992). The pseudorandom disturbances at the inow

of the precursor simulations decayed rapidly at �rst, but settled to a more physically

realistic decay rate before they reached the x = 150mm station at which velocity

data were extracted for use as inow to the boundary layer `successor' simulations.

The inowing free-stream turbulence for the successor simulations was therefore

close to isotropic (u

0

: v

0

: w

0

= 1 : 1:1 : 0:93) and was assumed to have most of the

required properties of grid turbulence. The deviation from isotropy of the inowing

f.s.t. arose from the anisotropic grid used in the precursor simulations, and did

not have a physical signi�cance. The decay of the free-stream turbulence level in

the successor simulation occured in line with expectations, Figure 2, after an initial

length of slightly faster decay left over from the history in the precursor simulations.

The �gure shows that the presence of the sub-grid scale model resulted in a slightly

faster decay of the free-stream turbulence.

The outow boundaries were treated by the simple advective method proposed by

Potamitis and Voke (1992). The outow was well downstream of the main region of

interest which extended up to and through transition. At the outow, the boundary

layer thickness �

+

99

= 446 (in the worst case) was about 44% of the box height. A

steady and uniform outow of 0:00625U

0

was imposed through the upper boundaries

in the �ne simulation and LES to compensate for the boundary layer growth; the

mean pressure gradient in these simulations was therefore very close to zero.

The LES was initiated by taking the upstream half of the �ne mesh simulation after

300ms, inserting the subgrid-scale model, and simulating for a further 400ms. The

detailed statistics to be presented later were gathered between 40ms and 400ms after

the subgrid-scale model was switched on.

3 Results

3.1 Transition

The simulation predictions are compared with two appropriate sets of experimental

results (Roach and Brierley 1992) at 3% and 6% f.s.t. Transition was found to occur

in positions in broad agreement with available experimental data, as judged by the

change in friction factor, Figure 3, or shape factor, Figure 4. The transition occurred

early, about a sixth of the way down the longer box in the 6% f.s.t. case, and the

resolution of the mesh appears not to have had a major inuence on the position

of transition. The presence of the subgrid-scale model caused a slightly early start

to transition, a long transition, and a slower approach to the turbulent level of wall

friction. Figures 5 and 6, showing the relationship between friction coe�cient and

shape factor and Re

#

, compare our LES with various experimental data. The LES
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appears to predict the later part of transition in a more convincing manner than the

other simulations, implying that the subgrid model played a useful rôle where real

turbulence was present. The transition started early but developed slowly in the

LES, a tendency apparent to a lesser extent in the other simulations as compared

with the experimental data.

The mean pro�les from the LES, Figure 7, clearly indicate the change from a laminar

to a turbulent character occurring through transition. The agreement with the

experiment of Roach and Brierley is good. The other simulations gave a similar

picture.

Figures 8, 9 and 10 show the r.m.s. uctuation pro�les for the LES at the same

positions, and again the agreement is generally good, particularly for u

0

where the

experimental data is also most reliable. The experimental data for v

0

and w

0

un-

fortunately is not available nearer to the wall. The peaks seen in the intensities,

broadly at the correct position and with the correct magnitude, indicate that the

LES captures the essential uid dynamics occurring in the laminar layer prior to

transition, and give considerable con�dence that the true physical processes of by-

pass transition are being reproduced numerically. Again the other simulations gave

a similar picture.

Figure 11 shows the pro�les of the principal Reynolds stress u

0

v

0

at x = 45mm and

x = 95mm. The predictions are clearly high relative to the data; unfortunately it

is easy to underestimate u

0

v

0

in hot-wire measurements by misorienting the probe

slightly, and some doubt has been cast on the validity of the experimental data.

Since we have no reason to excuse our predictions, it would be very useful to have

further information on the true level of the stress.

Figure 12 shows a view of u

0

as a function of x and y (stretched), graphically display-

ing the early transition. Figure 13 is a similar representation of the ratios between

the grid spacings �y and �z and the dissipation (Kolmogorov) length scale

l

k

= (�

3

=�)

1=4

: (5)

It is apparent that the y resolution close to the wall, which is dictated more by the

requirement to accurately represent the high gradients there, is more than adequate

in terms of the disipation scale; the grid scale is in fact less than l

k

. In the free

stream, the ratio �

y

=l

k

reaches 20 while �

z

=l

k

varies between 3 and 12.
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3.2 Numerical experiments

The presence of the pre-transition peaks in the simulation results gave us con�dence

that the mechanisms of transition were being broadly reproduced by the numeri-

cal simulations even at the low resolutions used. In an attempt to elucidate the

mechanisms at work in producing these uctuations in the laminar layer and the

early transition, a number of numerical experiments were carried out, based in every

case on the 6% f.s.t. level and using the coarse mesh. Such simulations were cheap

and fast to perform, and gave rapid pointers to the principal physical mechanisms

involved. The numerical experiments were:

1. Disturbances were introduced directly into the laminar layer in place of free

stream turbulence.

2. Fluctuations other than u

0

were omitted from the inow turbulence.

3. Fluctuations other than v

0

were omitted from the inow turbulence.

4. Fluctuations other than w

0

were omitted from the inow turbulence.

5. There was no inow free stream turbulence at all.

6. Inow turbulence was present above y = 5mm only.

7. Inow turbulence was present above y = 10mm only.

8. No wall damping of the inow turbulence was imposed.

9. A layer of high viscosity was inserted between y = 4:13mm and y = 7:7mm,

with inow turbulence above y = 7:7mm only.

10. The inow turbulence was tagged with a temperature marker above 7.7mm.

The form and results of each of these numerical experiments will be described in

turn.

3.2.1 Disturbances inside the layer

We �nd that disturbances introduced directly inside the laminar boundary layer at

the inow are ine�ective in provoking transition in the absence of f.s.t., unless the

disturbance levels are very high. Such disturbances are generally damped rapidly

by viscosity and the presence of the wall, with the layer settling back into an undis-

turbed laminar pro�le and continuing downstream without undergoing transition.

Very high levels of disturbance inside the layer at the inow, on the other hand,

could provoke an immediate and dramatic transition.
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3.2.2 Anisotropic f.s.t. at inow

In each of the next three numerical experiments, two components of the disturbances

transferred from the precursor simulation were omitted on the inow plane only

of the boundary layer simulation. The nonzero component was taken from the

precursor simulation of decaying grid turbulence, but the other two components were

omitted from the inow boundary speci�cation. The Navier-Stokes approximation

which is solved in the body of the simulation quickly started to redistribute energy

among the components, and so the energy was not restricted to one component for

long. In spite of this, the behaviours in the three cases were quite di�erent and

revealing.

The results are shown in Figure 14. It is immediately clear that the presence of the

u

0

component at the inlet plane had little importance in the triggering of the bypass

transition. The most important component was v

0

, which triggered transition exactly

as if the full isotropic disturbance were present. w

0

triggered transition late, though

this may be because of redistribution of energy into the v

0

component downstream of

the inow plane. These tests con�rmed the importance of wall-normal disturbances

in bypass transition, known from the experiments of Kachanov et al. (1978).

3.2.3 No f.s.t. disturbance

The test with no f.s.t. or other disturbances con�rmed that the laminar layer was

stable. There was no sign of T.S. waves or other incipient stages of transition.

3.2.4 Inow f.s.t. restricted to above 5 or 10mm

It was found that transition occurred early when the f.s.t. uctuations were removed

from the laminar layer and the region near the wall, and were restricted to the part

of the inow boundary well into the free stream. Only when the inow f.s.t. was

removed from a region adjacent to the wall of thickness comparable to the length

scale of the f.s.t. did the transition move downstream, Figure 15. This con�rms that

it is the direct interaction of the f.s.t. with the layer that produces the pre-transition

peaks and the early transition.

3.2.5 Inow turbulence without imposed wall damping

This test allowed us to con�rm that the damping of the f.s.t. v

0

component im-

posed in the main simulations was similar to that found when the unmodi�ed f.s.t.
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encountered the wall in the numerical test, Figure 16. A further related test was

carried out because of concern that the form of the inow boundary condition was

triggering the transition. In the main simulations, the inow plane was 10mm down-

stream of the nominal leading edge of the plate, since the �nite-volume simulations

could not resolve the very thin boundary layer close to the leading edge. However,

the u

0

disturbances appeared in the layers very early, within a few mesh cells of the

inow plane: it was therefore considered important to verify that the same type of

transition occurred when the inow boundary was removed from any direct contact

with the laminar layer. A test with the inow 20mm upstream of the leading edge,

and no imposed wall damping, gave results almost identical to the �rst of these two

tests.

3.2.6 Viscous slab

The numerical experiment with a highly viscous layer was performed to verify the

hypothesis that inviscid pressure-mediated action plays an important role in trans-

ferring disturbances into the layer at an early stage. Raised viscosity was introduced

into a layer between y = 4:13mm (y

+

= 118:3) and y = 7:7mm (y

+

= 223:43); it was

not associated with moving uid. The viscosity in the slab was raised to 100 times

the normal molecular viscosity of air. The disturbances on the inow plane were

again approximately isotropic with u

0

= v

0

= w

0

= 6% but were limited to the region

beyond the viscous slab. Figure 17 shows that the position of transition was hardly

a�ected by the presence of the viscous layer suggesting that irrotational motions

induced by the pressure �eld, interacting with the strong shear of the laminar layer,

were su�cient to provoke the behaviour normally seen. The pre-transition peaks

were found to be present in this test. The test indicated that the length scale of the

f.s.t. is crucial to the dynamics, since motions on this scale could jump the viscous

slab without di�culty.

3.2.7 Temperature tagging

Tagging the f.s.t. with a passive tracer (nominally a raised temperature, though no

buoyancy e�ects were allowed) con�rmed that transition took place when the tagged

free-stream uid came into contact with the laminar shear, Figure 18.
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3.3 Damping functions

The large-eddy simulation has been used to study the behaviour of ratios which enter

commonly-used k�� closure models as damping functions. The damping function

f

�

enters the de�nition of the turbulent eddy viscosity for such closures,

�

t

= C

�

f

�

k

2

�

: (6)

Here C

�

= 0:09 is constant and � is the dissipation. All the quantities in (6) could

be computed directly from the simulation, using any suitable components of mean

stress and strain to obtain the eddy viscosity required. We used only the principal

component of stress, so that the simulation predicted the form of the damping

function as

f

�

(x; y) = �

u

0

v

0

�

@u=@y C

�

k

2

: (7)

We compare this damping function with those used in three closure models that

have been used to predict bypass transition. In the model of Launder and Sharma

(1974) the function f

�

is estimated as

f

�

= exp[�3:4=(1 + k

2

=50��̂)

2

]; (8)

where

�̂ = �� 2�(@

p

k=@y)

2

: (9)

The modi�ed dissipation �̂ is also used in (6) when computing the turbulent eddy

viscosity with this model. The model of Lam and Bremhorst (1981) uses

f

�

= [1� exp(�0:0165y

�

)]

2

(1 + 20:5k

2

=��): (10)

The model of Chien (1982) has simply

f

�

= 1 � exp(�0:0115u

�

y=�): (11)

but like the Launder-Sharma model uses a modi�ed disspation function in (6) when

computing the turbulent eddy viscosity, though in this case the form is

~� = �� 2�k=y

2

: (12)

The nondimensional coordinates occurring in these models, y

+

= u

�

y=� and y

�

=

p

ky=� are readily computed in the simulation together with the modi�ed dissi-

pations, allowing the forms of the model damping functions to be compared with

the LES predictions. The models for f

�

are used in (6) each with the appropriate

dissipation function (�̂ for Launder-Sharma or ~� for Chien; Lam-Bremhorst uses �

unmodi�ed) so for each model we have used a consistent version of the simulation

damping function computed from (7) with the appropriate modi�ed dissipation in

place of �.
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Figure 19 shows the damping functions (simulated and modelled) for the three mod-

els, as a function of y at the positions x = 25; 45; 95; 195mm. The results are di�erent

from those presented by Yang and Voke (1993) since we have improved our method

of extracting � from the LES since those results were obtained. (Appendix A, section

A.11 gives details of the old and new methods of obtaining �.) It is now clear that

the model of Launder and Sharma has a general form for the wall damping closer

to the true picture than originally thought, which may acoount for its success in

predicting this type of transition (Savill 1992). Further work is proceeding, aimed

at determining the best nondimensional variables to use for describing the damping

through transition.

3.4 The mechanisms of transition

In the light of the numerical experiments, we concluded that the normal component

of f.s.t. is crucial in the receptivity of the boundary layer, which is provoked into

transition by exposure to free-stream v

0

in continuing interaction with the laminar

shear. A check of the pro�les of v

0

and @U=@y at various upstream stations, Fig-

ure 20, con�rmed that there was a region where both were non-zero. The shape

of the v

0

pro�le is partly determined by a damping imposed on the f.s.t. intensity

pro�les at the inow plane; by comparing the pro�le at an early station with that

output from the numerical experiment performed without any imposed damping,

Figure 21, we con�rm that the pro�le is physically realistic.

Further insight depended on a full analysis of the balance equations for several

components of the Reynolds stress. This was performed for the LES, the results

being gathered from a database of 800 samples extending over a simulation period

t

+

= 6600. The methods we used for extracting the balance terms are described in

detail in Appendix A.

Figure 22 shows the balance of the principal stress u

0

v

0

at the four stations x =

25; 45; 95; 195mm. The residual error term @

t

(u

0

v

0

), arising from lack of statistical

convergence, was signi�cant at some stations, but in these cases was clearly asso-

ciated with an equal and opposite deviation in the convection term. In all other

equations where the error term was nonzero (it was generally much smaller than

in the case in Figure 22) an association with a deviation of the convection term

from expectations was also suspected: we therefore combined the error term into

the convection for all the data. Other terms arising from the existence of a subgrid

eddy viscosity in this simulation were so much smaller than those shown that they

could be safely omitted.

Figure 23 is the balance of u

0

v

0

with the error absorbed. We see that the production

is balanced by a combination of the other terms. In Figure 24 the hypothesis that

the production of u

0

v

0

arises from the interation of f.s.t. v

0

with the laminar shear is
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con�rmed. So, although v

02

is strongly damped and a closer look at the v

0

balance

reveals that there is an extremely low level of production of v

02

in the layer, the early

u

0

v

0

production is driven by the overlap between the f.s.t. and the mean laminar

shear. The resulting production of u

0

v

0

is balanced by convection, pressure, turbulent

transport and viscous terms, with equal importance. The resulting turbulence stress

should be correlated with the externally imposed v

0

, and strongly concentrated into

the second and fourth quadrants.

The balance of u

02

is shown in Figure 25, and with the statistical error absorbed

in Figure 26. Inspection of the terms contributing to the production of u

02

has

con�rmed that the �u

0

v

0

dU=dy term is much larger than any other, as demonstrated

in Figure 27: the peak in u

02

is therefore consequential on the peak in u

0

v

0

. The

growth in the peaks occurs though the slowly increasing overlap between dU=dy

(as the laminar boundary layer grows) and the wall-normal f.s.t. uctuation v

0

(which does not change its damped y pro�le but decays slowly in x with the f.s.t.

level). This interaction therefore takes place between two essentially independent

phenomena.

Figure 28 shows the v

02

balance, and Figure 29 the same terms with the statistical

error absorbed. It is immediately apparent that v

0

within the layer behaves quite

di�erently from u

0

and is totally distinct from the f.s.t. v

0

. Production is negligi-

ble at all stations, and the redistribution of u

0

motions into v

0

does not take place

immediately: there is no evidence of a redistribution that responds to the u

0

pro-

duction in a simple way. The pressure term eventually makes itself felt, resulting

in the appearance of the v

0

peak in transition. No other terms contribute to this

peak. Figures 30 and 31 show the w

02

balance, in the same style as previous �gures.

The dynamics of w

0

are broadly similar to that seen for v

0

, though in this case the

damping e�ect of the wall has less inuence. Again the pressure term is the source

of the peak that appears in transition.

A simple, intuitive, and physically credible picture emerges from our analysis of the

stress balances from the LES. The f.s.t. v

0

�eld, damped by the resisting pressure

�eld generated in response to the presence of a wall, overlaps with the high mean

shear of the laminar layer to an extent that is dictated by the ratio of the f.s.t.

length scale and the boundary layer thickness. In the region of overlap a high

u

0

v

0

production is present, balanced by di�usive, convective, and dissipative actions.

This in turn generates a high u

02

production, again balanced by a mixture of actions.

This �rst stage of boundary layer receptivity is an external action of the f.s.t. wall-

normal uctuating �eld on the high shear, lifting low-speed uid away from the

wall and pushing high-speed uid towards it, generating a uctuating u

0

layer that

is a pure response to the external v

0

. Because of the high level of shear in the

boundary layer, the u

0

generated can be larger than the f.s.t u

0

or v

0

: the high shear

acts as an ampli�er of uctuations, as well as converting external v motions into

boundary-layer u motions.
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How can a peak of u

0

v

0

coexist with a very low level of v

02

production and no peak

in v

02

? This source of confusion is important to clarify: the peak in the u

0

v

0

is

exclusively a correlation between the free-stream v

0

and the wall-layer u

0

. There is

no correlation between u

0

and v

0

in the f.s.t., nor is there yet a wall-layer component

of v

0

. We see that the distinction between the two types of turbulence is essential to

an understanding of turbulence generation in the layer. It is also evident that the

dynamics is essentially anisotropic, since the rôles of u

0

and v

0

are quite di�erent.

Any approach that combines the uctuation components, as in simple closure models

that use k as a measure of turbulence activity, is at a severe disadvantage. It is hard

to see how such a model can capture the physical dynamics described above; only

a second moment closure has any hope of modelling the distinct rôles of u

0

and

v

0

. Furthermore, the f.s.t. and boundary-layer turbulence may need to be modelled

separately, and the inuence of the f.s.t. length scale be recognised in the modelling.

The second stage of the boundary layer receptivity is less clear. It is evident that

the �rst stage does not immediately give rise to redistribution of uctuating energy

into the v

0

and w

0

components; instead we see a buildup of u

0

through convection

in combination with continued stage-1 production of u

0

. It would be useful to un-

derstand why the pressure redistribution is delayed. The previous �gures showing

balances all include a total pressure term comprised of both pressure di�usion and

pressure-strain. The separation of each pressure term into its two parts gives rise to

further statistical and interpolation errors (see section A.10), but the de�nition we

have used is natural and gives convincingly smooth curves as well as enforcing the

condition that the sum of the pressure-strain terms for u

02

; v

02

and w

02

must equal

zero.

Figure 32 shows these three pressure-strain terms. We see that the separation of

the pressure term into pressure strain and pressure di�usion does little to clarify the

dynamics; in the case of the v

02

balance, near the wall the pressure strain is negative

during and after transition, and is o�set by an approximately opposite pressure

di�usion, so that there is a redistribution from both u

0

and v

0

into w

0

. We presume

that the redistribution from u

0

is a response to the high level of u

02

, while that from

v

0

must arise from the resistance o�ered by the nearby wall to v motion, which gives

rise to uctuating pressure gradients that oppose the v

0

di�using from further out.

Further from the wall we see the more natural situation of u

0

being redistributed

into v

0

and w

0

. This we understand, though it is still a mystery why the pressure

dynamics changes so rapidly between x =45 and 95mm.
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4 Conclusions

Large-eddy simulation has been shown to be a viable approach for the study of tran-

sition under turbulence. Numerical experiments have been performed showing the

importance of the normal component of the free stream turbulence in stimulating

bypass transition. Computations of damping functions used in several popular clo-

sure models highlight likely problems in reconciling the models with our simulated

dynamics.

Evidence from the balance equations derived directly from our LES supports the

importance of wall-normal free-stream disturbances. The wall-normal component of

the f.s.t. is damped in the presence of the wall in a manner determined by the f.s.t.

length scale alone, prior to transition. The overlap between the f.s.t. v

0

pro�le and

the large shear in the layer sets the level of production of uctuating shear stress,

and this in turn leads to production of streamwise disturbances inside the layer.

The redistribution of u

0

into the other components is delayed, its onset coinciding

with the start of transition in the zero-pressure-gradient case we have studied. The

reasons for the delay of pressure redistribution are not yet understood, and are the

subject of current research and discussion.
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A Appendix: Balance equations

A.1 Background

The equations for the Reynolds stress play an important role in closure models, and

since our simulations are used increasingly to provide data on the behaviour of the

modelled terms, it is important that we can compute these terms reliably.

The Reynolds stress is u

0

i

u

0

j

, where the overbar denotes the timemean and the primes

denote uctuating parts. In this appendix we drop the primes from the uctuating

parts, and use capitals (U, P, S, etc.) for the total instantaneous quantities, so that

U

i

= u

i

+ u

i

: (13)

In this notation the Reynolds stress is written u

i

u

j

. An equation for the stress

is derived by subtracting the equation for u

i

from the equation for U

i

to obtain

an equation for u

i

, which is then multiplied by u

j

. To this is added u

i

times the

equation for u

j

, giving an equation for the evolution of u

i

u

j

that is symmetric in i

and j. For instance for the time derivative term itself,

u

i

@

t

u

j

+ u

j

@

t

u

i

= @

t

(u

i

u

j

): (14)

By de�nition of the time average, this term tends to zero in the mean,

@

t

u

i

u

j

! 0; (15)

as the number of samples tends to in�nity. A �nite sample will always be used

in a real simulation, so we can at best expect the mean of this term to reduce as

we increase the sample size. In the following sections the overbar indicating the

accumulation of the time average is frequently omitted, the equations being given

for the terms that contribute to the sum. Nevertheless, terms that are clearly zero

in a full average, such as u

i

u

j

, are dropped from the balance.

The addition of the symmetrising term obtained by exchanging i and j subscripts

is a common feature a�ecting every term in the Reynolds stress equations. It is

denoted + i$j, which means that to the preceding term or terms is added a similar

term or terms with i and j interchanged.

A.2 Derivation of the balance equation

We take the incompressible momentum conservation equation in the form

@

t

U

i

+ @

k

(U

i

U

k

) + @

i

P � �@

k

S

ik

= 0; (16)
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and write down an equation for the mean immediately,

@

t

U

i

+ @

k

U

i

U

k

+ @

i

p � �@

k

s

ik

= 0: (17)

The equation for the uctuations u

i

is found by subtraction:

@

t

u

i

+ @

k

(U

i

U

k

� U

i

U

k

) + @

i

p� �@

k

s

ik

= 0: (18)

We now proceed as outlined in the previous section, multiplying by u

j

and sym-

metrising the indices i and j, to obtain

u

j

@

t

u

i

+ u

j

@

k

(U

i

U

k

� U

i

U

k

) + u

j

@

i

p � �u

j

@

k

s

ik

+ i$j = 0: (19)

A.3 Splitting the terms

The terms in (19) are normally rearranged in order to obtain a form in which each

individual term has a straightforward interpretation in the time average. We can

immediately drop the term of the form u

j

@

k

U

i

U

k

since its time mean is zero. The

time average of

u

j

@

t

u

i

+ i$j = @

t

(u

i

u

j

) (20)

tends to zero, but its computation is useful as an indication of the convergence of

the statistics.

Using the de�nition (13) we now expand the �rst term in (19). Making use of the

incompressible continuity relation for both u

k

and u

k

, and dropping the term in u

i

u

k

which does not contribute to the time mean, we obtain

u

j

@

k

(u

i

u

k

+u

i

u

k

+u

i

u

k

)+ i$j = u

j

u

k

@

k

u

i

+ i$j+u

k

@

k

(u

i

u

j

)+ @

k

(u

i

u

j

u

k

): (21)

These are the familiar production, convection and turbulent transport terms for the

Reynolds stress. In deriving these terms it is important to note the frequent use of

the continuity condition and the identity for the derivative of a product, for these

very natural analytic procedures do not generalise to the �nite-volume form of the

equations.

The pressure term is normally rearranged as

u

j

@

i

p+ i$j = @

i

(u

j

p) + i$j � ps

ij

; (22)

once more using the identity for the derivative of a product. The �rst term is called

the pressure di�usion, the second is the pressure strain. The viscous term is similarly

rearranged as

��u

j

@

k

s

ik

+ i$j = ��u

j

@

2

u

i

+ i$j

= ��@

k

(u

j

@

k

u

i

) + i$j + 2�@

k

u

j

@

k

u

i

= ��@

2

(u

i

u

j

) + 2�@

k

u

i

@

k

u

j

(23)
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The �rst of these terms is the viscous di�usion of stress; the second is the viscous

dissipation, �

ij

.

The terms contributing to the Reynolds stress balance are summarised as follows:

u

j

u

k

@

k

u

i

+ i$j Production

u

k

@

k

(u

i

u

j

) Convection

u

k

@

k

(u

i

u

j

) Turbulent transport

@

i

(u

j

p) + i$j Pressure di�usion

�ps

ij

Pressure strain

��@

2

(u

i

u

j

) Viscous di�usion

2�@

k

u

i

@

k

u

j

Viscous dissipation

@

t

(u

i

u

j

) Residual error

A.4 Energy balance

The turbulence kinetic energy k is u

i

u

i

=2, with summation over i, often denoted

u

2

=2. The individual contributions u

2

1

, u

2

2

and u

2

3

to k are called the turbulence

intensities and are (in the time mean) the diagonal components of the Reynolds

stress tensor.

Individual balance equations for each diagonal stress therefore exist and are obtained

by setting i = j in the corresponding term of the Reynolds stress balance. With

summation over i, we obtain the balance equation for 2k. In summary, the terms

are:

2u

i

u

k

@

k

u

i

Production

u

k

@ku

2

i

Convection

u

k

@

k

u

2

i

Turbulent transport

2@

i

(u

i

p) Pressure di�usion

�2p@

i

u

i

Pressure strain

��@

2

(u

2

i

) Viscous di�usion

2�(@

k

u

i

)

2

Viscous dissipation

@

t

(u

2

i

) Residual error

These terms when accumulated in a time average give the balance for individual

intensities if not summed over i. (There is summation over k). With summation

over i also, and dividing each term by 2, we get the terms of the balance of k. In

the latter case the pressure strain obviously vanishes.
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Note that the expression u

2

= u

i

u

i

(summed) is only equal to 2k in the mean in the

convection term. The turbulence transport involves triple products of uctuations.

The viscous dissipation of k is

� = �

ii

=2 = �(@

k

u

i

)

2

(24)

which is positive de�nite and represents a drain of energy.

A.5 The triple-step method

The attainment of a balance of terms in equations for Reynolds stress, energy and

dissipation depends on the fundamental identity:

a@

t

b+ b@

t

a = @

t

(ab): (25)

Unfortunately this elementarymathematical identity fails to generalise to discretised

time,

a�

t

b+ b�

t

a = a

b

n+1

� b

n

�t

+ b

a

n+1

� a

n

�t

6= �

t

(ab) =

a

n+1

b

n+1

� a

n

b

n

�t

; (26)

unless the unde�ned a and b factors are replaced by

a

C

=

a

n+1

+ a

n

2

(27)

and

b

C

=

b

n+1

+ b

n

2

: (28)

This method uniquely re-establishes the identity (25) in the form

a

C

�

t

b+ b

C

�

t

a = �

t

(ab): (29)

This quantity will tend towards zero with increasing number of statistical samples

N of a stationary process.

The method allows us to create balances of Reynolds stress, turbulence energy and

dissipation rate from the simulation variables that are strictly analogous to those

derived analytically. For instance, consider the simplest example of the balance for

u

2

i

. We take the time-discrete equation for the uctuation velocity u

i

,

�

t

u

i

= @

i

p + h

A

i

(30)

in which no superscript is used for the pressure since it is treated by the method of

Gavrilakis (1992), while the remaining terms take an A superscript indicating the

explicit Adams formula used in our codes:

h

A

i

=

3

2

h

n

i

�

1

2

h

n+1

i

: (31)
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h

i

is the uctuating part of H

i

,

h

i

= �@

k

(U

k

U

i

� U

k

U

i

) + �@

k

s

ik

: (32)

The equation is multiplied by u

C

i

(with no summation over i):

u

C

i

�

t

u

i

= �

t

u

2

i

= �u

C

i

@

i

p+ u

C

i

h

A

i

(33)

The accumulated time average of this combination must tend toward zero because

the time mean of

�

t

u

2

i

=

(u

n+1

i

)

2

� (u

n

i

)

2

�t

(34)

tends to zero provided u

2

i

in the simulation does not drift systematically over the

period the statistics are accumulated: that is, provided the simulation is statistically

stationary.

To compute the terms in u

C

i

h

A

i

, it is necessary to reconstruct the individual parts of

h

i

at both time steps n and n� 1 to form part of h

A

i

, and multiply it by u

C

i

, which

requires u

i

at steps n and n + 1. It should be evident that we need

1. mean velocity components and pressure (and temperature in the case of a

thermal simulation)

2. uctuating velocities (and temperatures) at steps n� 1, n and n+ 1

3. the uctuating pressure used in moving from step n to step n+ 1.

The velocities (and temperature) are therefore stored at three adjacent time steps

and the pressure at one. The means are found �rst and stored. The data is then

scanned, the mean being subtracted to get the uctuating parts, and the term

that is sought is constructed by the product of a C superscript variable with an A

superscript combination representing part of the acceleration. This technique has

been dubbed the triple-step method for computing terms in balance equations.

A.6 Reynolds stress balance by triple-step

We give the explicit form of the above ideas for the balance of u

i

u

j

. Overbars are

omitted.

�

t

(u

i

u

j

) = u

C

i

�

t

u

j

+ i$j

= u

C

i

(�@

j

p + h

A

j

) + i$j

= u

C

i

(�@

j

p � @

k

(U

k

U

j

� U

k

U

j

)

A

+ �@

k

s

A

jk

) + i$j: (35)
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These expressions tend to zero in the limit of su�ciently large and extended samples

of a statistically stationary simulation. Exactly as in the analytic derivation of

balance equations, the term

u

C

i

@

k

U

k

U

j

A

(36)

is identically zero, as is the part

u

C

i

@

k

U

k

A

U

j

A

(37)

of the triple term. The remaining nonzero terms are:

u

C

i

@

k

(u

k

u

j

)

A

+ i$j Production

u

C

i

@

k

(u

k

u

j

)

A

+ i$j Convection

u

C

i

@

k

(u

k

u

j

)

A

+ i$j Turbulent transport

u

C

i

@

j

p+ i$j Pressure terms

��u

C

i

@

k

s

A

jk

+ i$j Viscous terms

�

t

(u

i

u

j

) Residual error

Note that the pressure and viscous terms are not yet separated into the standard

form since the separation depends on details of the spatial discretisation, dealt

with below. For the same reasons, the production, mean convection and turbulent

transport terms are not rearranged in any way using the continuity equation.

To summarise, the time-discrete balance is computed by the use of a triple-step

database obtained from the simulation, which must consist of a sequence of �elds at

steps n�1; n and n+1, allowing the subsequent recomputation of the accelerations

used to advance the velocities, and the products of these terms with the combination

u

C

i

= (u

n+1

i

+ u

n

i

)=2: (38)

In order to extract the standard production, convection, and turbulent transport

terms, it is necessary to recompute the nonlinear terms in three parts, with the

velocities being split into mean and uctuating parts.

A.7 Interpolation and di�erencing

The triple-step method for balance equations deals with those problems arising

from time-stepping in de�ning a proper balance. It says nothing about the space

discretisation, but does imply that the precise forms of spatial interpolation and

di�erencing used to compute accelerations during the simulation should also be

used when computing the balance.
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The general form of a term in a discrete balance equation using the triple-step

method is

u

C

i

a

j

+ i$j; (39)

where a

j

is an acceleration derived exactly as it was during the simulation. For

instance in the transport term

u

C

i

@

k

(u

k

u

j

)

A

+ i$j (40)

the second factor must be computed as an Adams term if that scheme is used in the

simulation, and the interpolations of u

k

and u

j

must be exactly the same as those

used for U

k

and U

j

in the simulation. @

k

must also be the same di�erence operation

used in the simulation. The separation of mean and uctuating velocity components

makes no di�erence to these requirements. From this point, the notation @

k

is used

to mean the appropriate di�erence operation rather than an analytic derivative; no

ambiguity results from this change.

A.8 Diagonal stresses

For the three cases where i = j, the velocity u

C

i

and the acceleration a

i

are de�ned

at the same point on the staggered mesh (the i face) and the product will naturally

be computed there. Thus we compute the balance terms for the diagonal stresses

at the same position on the mesh as the diagonal stresses themselves { u

2

i

on the i

face and simlarly for hte other two components.

A.9 O�-diagonal stresses

For the o�-diagonal stresses, the velocity factor u

C

i

and the acceleration factor a

j

are

de�ned at di�erent points on the staggered mesh. In spite of this, the balance will

be exactly obtained in the limit of a large enough sample when the two factors are

interpolated to a common point in a consistent way before being multiplied together.

Suppose we interpolate the velocities u

C

i

in the j direction to obtain interpolated

velocities denoted v

C

i

, and all the acceleration factors a

j

consistently in the i direction

to obtain interpolated accelerations denoted by b

j

. Since the b terms are simple linear

combinations of the accelerations actually used in the simulation, they are equal to

the time rate of change of the corresponding velocity component u

j

, interpolated in

the same way in the j direction, denoted w

j

.

Thus the sum of all the products will be

v

C

i

�

t

b

j

= (v

n+1

i

+ v

n

i

)(w

n+1

j

� w

n

j

)=2�t: (41)
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We now must add the symmetrising term denoted by i$j. However, the u

i

compo-

nent will still be interpolated in the j direction to obtain v

i

, and the u

j

component

interpolated in the i direction to obtain w

j

; thus the symmetrised expression com-

puted must be

v

C

i

�

t

b

j

+ i$j = [(v

n+1

i

+ v

n

i

)(w

n+1

j

�w

n

j

) + (w

n+1

j

+ w

n

j

)(v

n+1

i

� v

n

i

)]=2�t

= (v

n+1

i

w

n+1

j

� v

n

i

w

n

j

)=�t

= �

t

(v

i

w

j

): (42)

This is exactly what we require: the time rate of change of an o�-diagonal stress

interpolated to the ij cell edge in any way we choose. Clearly, for consistency with

the computed mean o�-diagonal stresses and with the simulation dynamics, the

interpolation method should be exactly that used for the velocities in the simulation

when computing the nonlinear stress terms.

A.10 The pressure terms

The separation of the pressure terms into pressure di�usion and pressure strain (and

the similar separation of the viscous terms into viscous di�usion and dissipation) is

rather more tricky. The analytic separation,

u

i

@

j

p+ i$j = @

j

(u

i

p) + i$j � ps

ij

; (43)

does not generalise straighforwardly to the discrete representation on a staggered

mesh. To do so, u

i

and p would have to be de�ned at the same points in the �rst

term on the right hand side, while u

i

on the left hand side (and p in the other term

likewise) have to be special unweighted interpolations of these for the identity to

hold. None of these requirements can be met easily.

To retain the discretised stress balance, it is vital that the left-hand-side product is

computed exactly as the triple-step method demands, namely

u

C

i

@

j

p+ i$j (44)

The other two terms which we wish to extract must sum to give the left hand side in

precisely this form, otherwise the stress equation will no longer balance. The only

way to do this is to compute the left hand side product in the way demanded by

the triple-step method to give the stress balance, compute separately the pressure

strain in a sensible manner at the same point of the staggered mesh, and add the

two to obtain the pressure di�usion term.

The computation proceeds as follows. For the diagonal terms, u

C

i

@

i

p is computed

at the i face. The pressure strain 2ps

ii

is computed at the cell centre (guaranteeing
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that the sum over i will be zero by continuity) and is then interpolated in any way

we please to the i face. The diagonal di�usion terms are then computed as

2@

i

(u

i

p) = 2u

i

@

i

p+ ps

ii

: (45)

The o�-diagonal terms i 6= j must be interpolated like the velocities in the nonlinear

terms in the simulation, as explained in the previous section, if they are to combine

with all the other terms interpolated in the same way to give a stress balance. We

proceed as in the previous section to obtain

u

C

i

@

j

p+ i$j (46)

at the ij cell edge. The uctuating strain rate s

ij

is also naturally computed at the

ij edge. The pressure is interpolated from the centre to this edge in any way we

choose, and the o�-diagonal di�usion is �nally computed as

@

j

(u

i

p) + i$j = u

i

@

j

p + i$j + 2ps

ij

: (47)

A.11 The viscous terms

The analytic splitting of the viscous term,

��u

i

@

k

s

jk

+ i$j = ��u

i

@

2

u

j

+ i$j = ��@

2

(u

i

u

j

) + 2�@

k

u

i

@

k

u

j

; (48)

is not easily reproduced on a discrete mesh, for reasons similar to those presented in

the case of the pressure rearrangement. Once more, we seek a simple way to ensure

that the terms �nally output as representing the viscous di�usion and dissipation

sum to the expression

��u

C

i

@

k

s

A

jk

+ i$j; (49)

which must be interpolated in the way described in the preceeding sections in order

to guarantee the proper contribution to the overall stress balance. Each diagonal

termmust be computed on the correct face, and each o�-diagonal term at the correct

edge.

By analogy with the method proposed for the pressure terms, the sum should be

computed in the manner described, with the acceleration @

k

s

A

jk

naturally being on

the j face, as for the computation of the viscous terms in the simulation. u

C

i

is

computed on the i face. For the o�-diagonal terms the interpolation of the two

factors to the ij edge must be done consistently with all the other terms.

The dissipation may now be computed by two-cell central di�erencing, so that @

k

u

i

is on the i face and @

k

u

j

on the j face. In the case of the o�-diagonal terms, the

two factors are interpolated to the ij edge in the same manner used for all other

terms before being multiplied together. This must be done for all three k values
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to obtain the sum over k. The viscous di�usion term is �nally computed as the

sum. This method was used to compute � for the analysis of damping functions in

Yang and Voke (1993). However the dissipation pro�les were not convincing, and

an alternative method was sought.

On the advice of Launder (1993), the following alternative scheme was tried. The

viscous di�usion terms for the diagonal stresses are computed using the discrete

Laplacian @

2

u

2

i

of each squared velocity component, on its own face. The total

viscous term is then subtracted to obtain the dissipation:

�@

2

(u

2

i

)� 2�u

i

@

k

s

ik

= 2�(@

k

u

i

)

2

= �

ii

: (50)

This method has been found to be successful in producing credible pro�les of �,

which is found by interpolating the three diagonal dissipations �

ii

to the centre

and summing. The method can be extended to the o�-diagonal terms, with all

interpolations being carried out in the standard manner:

�@

2

(u

i

u

j

)� (�u

i

@

k

s

jk

+ i$j) = 2�@

k

u

i

@

k

u

j

= �

ij

: (51)
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B Figures

Figure 1. Geometry of the simulations: left, precursor simulation of decaying

grid turbulence; right, successor simulation of boundary layer transition under free

stream turbulence.

Figure 2. Decay of the free stream turbulence u

0

in the boundary layer simulation.

Solid line, LES; dashed line, �ne mesh; dotted line, coarse mesh; chained line, Roach

and Brierley (1992).
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Figure 3. Friction coe�cient as a function of Re

x

. Solid line, LES, 6% f.s.t.; dashed

line, �ne mesh; dotted line, coarse mesh; long dashes, coarse mesh simulation with

3% f.s.t.; symbols, Roach and Brierley (1992), 6% or 3% f.s.t.

Figure 4. Shape factor as a function of Re

x

. As Figure 3.
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Figure 5. Friction coe�cient as a function of Re

#

. Solid line, LES; dashed line, �ne

mesh; crosses, Roach and Brierley (1992); triangles, Coles (1962); circles, Erm et al.

(1985).

Figure 6. Shape factor as a function of Re

#

. As Figure 5.
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Figure 7. Mean U pro�les at three x stations. Solid line, LES; symbols, Roach and

Brierley (1992).

Figure 8. R.m.s. uctuation u

0

pro�les. As Figure 7.
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Figure 9. R.m.s. uctuation v

0

pro�les. As �gure 7.

Figure 10. R.m.s. uctuation w

0

pro�les. As Figure 7.
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Figure 11. Principal stress u

0

v

0

pro�les. As Figure 7.

Figure 12. Three-dimensional view of the r.m.s. uctuation u

0

distribution in x and

J , the wall-normal mesh index.
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Figure 13. Ratio of mesh size to estimated Kolmogorov length scale.

Top, �y=l

k

; bottom, �z=l

k

.
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Figure 14. Friction coe�cient as a function of Re

x

: numerical experiment. Solid

line, v

0

only at inlet; dashed line, w

0

only at inlet; long dashes, u

0

only at inlet;

dotted line, coarse mesh, normal f.s.t. at inlet; symbols, Roach and Brierley (1992).
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Figure 15. Friction coe�cient as a function of Re

x

: numerical experiment. Solid

line, f.s.t above 10mm at inlet; dashed line, f.s.t. above 5mm at inlet; dotted line,

coarse mesh, normal f.s.t. at inlet; symbols, Roach and Brierley (1992).

Figure 16. Friction coe�cient as a function of Re

x

: numerical experiment. Solid

line, no damping imposd on f.s.t. at inlet; dotted line, coarse mesh, normal f.s.t. at

inlet; symbols, Roach and Brierley (1992).
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Figure 17. Friction coe�cient as a function of Re

x

: numerical experiment. Solid

line, viscous slab inserted; dotted line, coarse mesh, normal simulation; symbols,

Roach and Brierley (1992).

Figure 18. Temperature uctuation T

0

in a numerical experiment.
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Figure 19. Damping f

�

as functions of y, based on the models of Launder and

Sharma (1974), solid line and circles; Lam and Bremhorst (1981), dotted line and

triangles; Chien (1982), dashed lined and crosses. Symbols, as predicted by mod-

elling; lines, LES prediction from equation (7). Top left, x = 25mm; top right,

x = 45mm; bottom left, x = 95mm; bottom right, x = 195mm.
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Figure 20. Pro�les of r.m.s. uctuation v

0

(normalised to the local free-stream

value) and principal shear @U=@y (normalised to the local wall value). solid, 15mm;

dotted, 25mm ; chained, 35mm ; dashed, 45mm.

Figure 21. Pro�les of r.m.s. uctuation v

0

at x = 15mm. Solid line, LES, with

Blasius pro�le at inlet and imposed wall damping; dotted, numerical experiment

with at inlet pro�le and no wall damping.
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Figure 22. Terms in the balance of u

0

v

0

: Solid line, production; dotted line, con-

vection; dot-dash, turbulent transport; dashed, pressure terms; long dashes, viscous

terms; triple-dot-dash, residual error. Top left, x = 25mm; top right, x = 45mm;

bottom left, x = 95mm; bottom right, x = 195mm.
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Figure 23. Terms in the balance of u

0

v

0

, with the error term combined with convec-

tion. Otherwise, as Figure 22.
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Figure 24. Production terms in the balance of u

0

v

0

. Solid line, total production;

dotted line, �v

02

dU=dy only.
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Figure 25. Terms in the balance of u

02

. As Figure 22.
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Figure 26. Terms in the balance of u

02

, with the error term combinedwith convection.

As Figure 23.
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Figure 27. Production terms in the balance of u

02

. Solid line, total production;

dotted line, �u

0

v

0

dU=dy only.
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Figure 28. Terms in the balance of v

02

. As Figure 22.
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Figure 29. Terms in the balance of v

02

, with the error term combinedwith convection.

As Figure 23.
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Figure 30. Terms in the balance of w

02

. As Figure 22.
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Figure 31. Terms in the balance of w

02

, with the error term combined with convec-

tion. As Figure 23.
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Figure 32. Pressure-strain terms in the balances of diagonal stresses: solid line, u

02

;

dotted line, v

02

; dashed line, w

02

.


