RANS/LES coupling with Synthetic-Eddy Method and controlled forcing: application to rotating channel flow

Benoît de Laage de Meux\(^1\)
Bruno Audebert\(^1\)
Rémi Manceau\(^2\)

\(^1\)MFEE/I85 Departement
EDF R&D, Chatou, France
benoit.de-laage-de-meux@edf.fr
bruno.audebert@edf.fr

\(^2\)Institute PPRIME, FTC Departement
CNRS–University of Poitiers–ENSMA, Poitiers, France
remi.manceau@univ-poitiers.fr

Code_Saturne user meeting
Tuesday the 7th of december 2010

Thanks to: D. Monfort, S. Benhamadouche, R. Howard
Plan

1. Introduction
2. Turbulence models sensitive to rotation
3. RANS/LES coupling at inlet boundary using the Synthetic–Eddy Method
4. RANS/LES coupling on overlapping regions: a general controlled forcing
5. Conclusion
Plan

1. Introduction
2. Turbulence models sensitive to rotation
3. RANS/LES coupling at inlet boundary using the Synthetic—Eddy Method
4. RANS/LES coupling on overlapping regions: a general controlled forcing
5. Conclusion
Context, objectives

- Contribution to the development of Code_Saturne turbomachinery functionalities

⇒ What are the turbulence models adapted to rotating flows?

- Complex industrial applications in the turbomachinery field

Unsteady mixing between hot and cold water in some EDF pumps

- Complex physics: dynamic dominated by rotation, heat transfers
- Multiple time scales: rotor/stator interactions, turbulent time scales, heat transfers time scales
- Large computational domain

⇒ Which modelling strategy should be used?
Context, objectives

- Contribution to the development of *Code_Saturne* turbomachinery functionalities

 ⇒ What are the turbulence models adapted to rotating flows?

- Complex industrial applications in the turbomachinery field

 Unsteady mixing between hot and cold water in some EDF pumps

 - Complex physics: dynamic dominated by rotation, heat transfers
 - Multiple time scales: rotor/stator interactions, turbulent time scales, heat transfers time scales
 - Large computational domain

 ⇒ Which modelling strategy should be used?
RANS/LES zonal coupling should deal with the application mentioned above.

Previous work at EDF and UMIST:
- \textit{Code_Saturne}/\textit{Code_Saturne} coupling (available in the 2.0 version of the code)
- Synthetic inflow boundary conditions for LES (N. Jarrin thesis [4])

Each of the coupled RANS and LES model must be efficient for rotating flows.

\textbf{FIG. 2:} Zonal coupling concept and example of application

\textbf{Spanwise rotating channel test case}
- Stabilization (resp. destabilization) at suction (resp. pressure) side
- 2Ω slope in the core of the channel
- Longitudinal roll cells at moderate rotation numbers
Strategy, test case

- RANS/LES zonal coupling should deal with the application mentioned above
- Previous work at EDF and UMIST:
 - *Code_Saturne/Code_Saturne* coupling (available in the 2.0 version of the code)
 - Synthetic inflow boundary conditions for LES (N. Jarrin thesis [4])
- Each of the coupled RANS and LES model must be efficient for rotating flows

Fig. 2: Zonal coupling concept and example of application

Spanwise rotating channel test case

- Stabilization (resp. destabilization) at suction (resp. pressure) side
- 2Ω slope in the core of the channel
- Longitudinal roll cells at moderate rotation numbers
Plan

1. **Introduction**

2. **Turbulence models sensitive to rotation**
 - RANS modelling
 - Large eddy simulation

3. **RANS/LES coupling at inlet boundary using the Synthetic–Eddy Method**

4. **RANS/LES coupling on overlapping regions: a general controlled forcing**

5. **Conclusion**
Statistical approach : RANS modelling (1/2)

Second moment closure (SMC):
- natural closure level to model the anisotropic effects of rotation

\[
\frac{dR_{ij}}{dt} = P_{ij} + \phi_{ij} + D_{ij} - \varepsilon_{ij}, \quad \phi_{ij} = f(b, S, \omega)
\]

\[
\frac{dR_{ij}}{dt} = P_{ij} + \phi_{ij} + D_{ij} - \varepsilon_{ij} + G_{ij}, \quad \phi_{ij} = f(b, S, W)
\]

- SSG model is better than LRR (suggested by equilibrium state analysis, confirmed by our computations, Fig. 3)
- Elliptic-blending Reynolds Stress Model [9] preserves the consistency of SSG model with linear stability analysis (Fig. 4)

Fig. 3: Mean velocity profiles. \(Re_\tau = 1500\), \(Ro_\tau = 5\). LRR model (solid lines) and SSG model (dashed line, profile shifted). Theoretical slope in the core of the channel are also shown.

Fig. 4: Blending function \(\alpha\) of the EBRSM. \(Re_b = 7000\), \(Ro_b = 0, 1/6, 0.5, 1.5\).
Statistical approach : RANS modelling (2/2)

Linear eddy-viscosity model (EVM) :
- no Coriolis effect in basic models
- some corrections for rotation and curvature (RC) have been proposed

RC corrections
- Spalart and Shur [12]
- Pettersson Reif et al [10]
- Cazalbou et al [1]

Basic models
- $k - \omega$ SST
- $\phi - f$ (Laurence et al [8])
- Lauder-Sharma

Fig. 5: Mean velocity (left), turbulent kinetic energy (center) and Reynolds shear stress (right) for increasing rotation rates (profiles are shifted).

$Re_b = 2500$, $Ro_b = 0, 1/6, 0.5, 1.5$.
- : DNS [7], -- : C-LS, --- : SS-SST, ---- : PR-f, --- : EBRSM.
Linear eddy-viscosity model (EVM):
- no Coriolis effect in basic models
- some corrections for rotation and curvature (RC) have been proposed

RC corrections
- Spalart and Shur [12]
- Pettersson Reif *et al* [10]
- Cazalbou *et al* [1]

Basic models
- $k - \omega$ SST
- $\phi - f$ (Laurence *et al* [8])
- Lauder-Sharma

Fig. 5: Mean velocity (left), turbulent kinetic energy (center) and Reynolds shear stress (right) for increasing rotation rates (profiles are shifted). $Re_b = 2500$, $Ro_b = 0$, $1/6$, 0.5, 1.5.
- : DNS [7], – : C-LS, — : SS-SST, --- : PR-ϕ-f, ---- : EBRSM.
Space-filtered approach: SGS modelling

Well resolved LES were conducted: $(\Delta_x^+, \Delta_y^+, \Delta_z^+) \sim (20, 1, 10)$ in the non-rotating case, same mesh for all rotation rates.

Fig. 6: Mean velocity (left) and resolved turbulent kinetic energy (right) in wall coordinates at pressure (p) (resp. suction (s)) side of the channel, for increasing rotation rates (profiles are shifted). $Re_b = 7000$, $Ro_b = 0, 1/6, 0.5, 1.5$.

Rotation acts mainly on the large scale (resolved) flow (see Jacquin et al [3] and Fig. 7) \Rightarrow all models give satisfactory results.

Specific features

- **WALE model:** $\nu_{SGS} \sim \Omega^{4.8}$ \Rightarrow inaccurate at high rotation rates
- **dynamic model (local)** accurate at moderate rotation rates
Coupling with the Synthetic–Eddy Method: formulation

Synthetic-Eddy Method (SEM) concept: fluctuations at a LES inflow boundary are generated by a set of eddies convected, by the bulk mean velocity, in a virtual box surrounding the inlet plane

\[
\widetilde{u}_i(x) = \langle \widetilde{u}_i(x) \rangle + \frac{1}{\sqrt{N}} \sum_{\lambda=1}^{N} \sum_{j=1}^{3} a_{ij}(x) \epsilon_{j}^{\lambda} f_{\sigma}(x)(x - x^{\lambda}),
\]

- \(\langle \widetilde{u}_i \rangle, (a_{ij}) \) : target first and second order moments
- \(\epsilon_{k}^{\lambda}, f_{\sigma}(x)(x - x^{\lambda}) \) : sign and magnitude of the fluctuations generated by eddy \(\lambda \), depending on:
 - its position \(x^{\lambda} \) (updated at each time step)
 - the characteristic turbulent length scale \(\sigma \)

Coupling:

- With an upstream EVM (Jarrin et al. [5]):
 \[
 \sigma = \max \left\{ \min \left\{ \frac{k^{3/2}}{\epsilon}, \kappa \delta \right\}, \Delta \right\}, \quad \Delta = \max\{\Delta_x, \Delta_y, \Delta_z\}, \quad \kappa = 0.41
 \]
- Generalization for SMC:
 \[
 \sigma_i = \max \left\{ \min \left\{ \frac{\left(\frac{3}{2} u'_i u'_i \right)^{3/2}}{\epsilon}, \kappa \delta \right\}, \Delta_i \right\}
 \]
Coupling with the Synthetic–Eddy Method : formulation

Synthetic-Eddy Method (SEM) concept: fluctuations at a LES inflow boundary are generated by a set of eddies convected, by the bulk mean velocity, in a virtual box surrounding the inlet plane

\[\tilde{u}_i(x) = \langle \tilde{u}_i(x) \rangle + \frac{1}{\sqrt{N}} \sum_{\lambda=1}^{N} \sum_{j=1}^{3} a_{ij}(x) \epsilon_{j}^{\lambda} f_{\sigma}(x)(x - x^{\lambda}), \]

- \(\langle \tilde{u}_i \rangle, (a_{ij}) \): target first and second order moments
- \(\epsilon_{k}^{\lambda}, f_{\sigma}(x)(x - x^{\lambda}) \): sign and magnitude of the fluctuations generated by eddy \(\lambda \), depending on:
 - its position \(x^{\lambda} \) (updated at each time step)
 - the characteristic turbulent length scale \(\sigma \)

Coupling: evaluated from an upstream RANS computation

- With an upstream EVM (Jarrin et al [5]):
 \[\sigma = \max \left\{ \min \left\{ \frac{k^{3/2}}{\varepsilon}, \kappa \delta \right\}, \Delta \right\}, \quad \Delta = \max\{\Delta_x, \Delta_y, \Delta_z\}, \quad \kappa = 0.41 \]
- Generalization for SMC:
 \[\sigma_i = \max \left\{ \min \left\{ \left(\frac{3}{2} u'_i u'_i \right)^{3/2} \right\}, \kappa \delta \right\}, \Delta_i \]
Coupling with the Synthetic–Eddy Method

An upstream periodic RANS computation coupled by SEM with a spatially developing LES

- RC sensitive models in the RANS region: SS-SST and EBRSM
- LES region: Smagorinsky model, \((\Delta_x^+, \Delta_y^+, \Delta_z^+) \approx (50, 2, 15)\) mesh (scaled on the friction velocity of the non-rotating case)

Fig. 8: Non rotating case. Friction coefficient (top) and normalized integral error (bottom) of resolved kinetic energy (solid lines) and shear stress (dashed lines).

Fig. 9: Rotating case: \(Ro_b = 1/6, 0.5\) (profiles are shifted). Mean velocity (top) and resolved kinetic energy (bottom). From left to right: \(x = 5, x = 10, x = 15, x = 30\).

Especially in the rotating case, anisotropic SEM takes value of the finer EBRSM predictions in the RANS region.
Plan

1. Introduction
2. Turbulence models sensitive to rotation
3. RANS/LES coupling at inlet boundary using the Synthetic–Eddy Method
4. **RANS/LES coupling on overlapping regions : a general controlled forcing**
 - Introduction
 - Straightforward approaches
 - The new approach
5. Conclusion
Goal, literature survey and formalism

Basic equations (LES domain) \(\frac{\partial \tilde{u}_i}{\partial t} + \cdots = \cdots + f \)

Volumic RANS/LES coupling (forcing) should help to:
- Allow a faster development of realistic turbulence
 - Inflow coupling: Spille-Kohoff and Kaltenback [13]. A controller of the error between resolved and target shear stress is used to adapt the wall normal fluctuations. Successfully applied by Keating et al [6] for hybrid RANS/LES.
 - Tangential coupling: Davidson and Billson [2]. Synthetized fluctuations are super-imposed in the momentum equations.
- Drive a (eventually low resolved) LES toward target moments (given by a background RANS computation)
 - Outflow coupling: Schlüter et al [11]. A relaxation term between RANS and LES variables is introduced.

⇒ Large scope of applications, various formulations

Present proposal focuses on the influence of the forcing on resolved moments:

\[
\begin{align*}
 f = \tilde{f} + f' & \Rightarrow \\
 \frac{\partial \tilde{u}_i}{\partial t} + \cdots = \cdots + \tilde{f} & + \cdots + \left(\frac{\partial \tilde{u}_i \tilde{u}_j}{\partial t} + \cdots + \tilde{u}_i' \tilde{f}'_j + \tilde{u}_j' \tilde{f}_i' \right) \\
\end{align*}
\]
Goal, literature survey and formalism

Basic equations (LES domain): \[
\frac{\partial \tilde{u}_i}{\partial t} + \cdots = \cdots + f
\]

Volumic RANS/LES coupling (forcing) should help to:
- Allow a faster development of realistic turbulence
 - Inflow coupling: Spille-Kohoff and Kaltenback [13]. A controller of the error between resolved and target shear stress is used to adapt the wall normal fluctuations. Successfully applied by Keating et al [6] for hybrid RANS/LES.
 - Tangential coupling: Davidson and Billson [2]. Synthetized fluctuations are super-imposed in the momentum equations.
- Drive a (eventually low resolved) LES toward target moments (given by a background RANS computation)
 - Outflow coupling: Schlüter et al [11]. A relaxation term between RANS and LES variables is introduced.

⇒ Large scope of applications, various formulations

Present proposal focuses on the influence of the forcing on resolved moments:

\[
f = \bar{f} + f' \Rightarrow \left\{ \begin{array}{l}
\frac{\partial \tilde{u}_i}{\partial t} + \cdots = \cdots + \bar{f} \\
\frac{\partial \tilde{u}_i'}{\partial t} + \cdots = \cdots + \tilde{u}_i'f_j' + \tilde{u}_j'f_i'
\end{array} \right\}
\]
Goal, literature survey and formalism

Basic equations (LES domain): \[\frac{\partial \tilde{u}_i}{\partial t} + \cdots = \cdots + f \]

Volumic RANS/LES coupling (forcing) should help to:

- Allow a faster development of realistic turbulence
 - Inflow coupling: Spille-Kohoff and Kaltenback [13]. A controller of the error between resolved and target shear stress is used to adapt the wall normal fluctuations. Successfully applied by Keating et al [6] for hybrid RANS/LES.
 - Tangential coupling: Davidson and Billson [2]. Synthetized fluctuations are super-imposed in the momentum equations.

- Drive a (eventually low resolved) LES toward target moments (given by a background RANS computation)
 - Outflow coupling: Schlüter et al [11]. A relaxation term between RANS and LES variables is introduced.

\[f = \bar{f} + f' \Rightarrow \left\{ \begin{array}{l} \frac{\partial \tilde{u}_i}{\partial t} + \cdots = \cdots + \bar{f} \\ \frac{\partial \tilde{u}_i' \tilde{u}_j'}{\partial t} + \cdots = \cdots + \overline{u_i'u_j'} + P_{ij}' \end{array} \right. \]

⇒ Large scope of applications, various formulations

General sketch of an embedded LES in a surrounding RANS computation
Straightforward approaches

The relaxation approach is quite intuitive (see Schlüter et al [11]).

- **Mean velocity forcing**: \(f_i = \bar{f}_i = \frac{1}{\tau} (\bar{u}_i^{\text{RANS}} - \bar{u}_i) \), with \(\tau \) a relaxation time

 Here, \(\bar{u}_i = \langle \hat{u}_i \rangle \Delta_t \), with \(\langle \cdot \rangle \Delta_t \) an exponential time filtering of size \(\Delta_t = 10 \frac{k}{\varepsilon} \)

 ![Fig. 10: SEM with mean velocity forcing: friction coefficient. \(Re_b = 7000 \), \(Ro_b = 0 \).](image)

 \(f'_i = 0 \Rightarrow P_{ij}^f = 0 \)

 - No significant effect with this forcing

- **Instantaneous velocity forcing**: \(f_i = \bar{f}_i = \frac{1}{\tau} (\bar{u}_i^{\text{RANS}} - \hat{u}_i) \)

 ![Fig. 11: SEM with instantaneous velocity forcing: friction coefficient (left) and example of velocity signal in the forcing zone (right).](image)

 \(P_{ij}^f = -\frac{2}{\tau} \hat{u}_i \hat{u}_j' \)

 - Fluctuations are damped
Straightforward approaches

The relaxation approach is quite intuitive (see Schlüter et al [11]).

- Mean velocity forcing: \(f_i = \bar{f}_i = \frac{1}{\tau} (\bar{u}_i^{\text{RANS}} - \bar{u}_i) \), with \(\tau \) a relaxation time

 Here, \(\bar{u}_i = \langle \bar{u}_i \rangle \Delta t \), with \(\langle \cdot \rangle \Delta t \) an exponential time filtering of size \(\Delta t = 10 \frac{k}{\varepsilon} \)

\[f_i' = 0 \Rightarrow P_{ij}^f = 0 \]

No significant effect with this forcing

\[P_{ij}^f = -\frac{2}{\tau} \bar{u}_i \bar{u}_j' \]

- Instantaneous velocity forcing: \(f_i = \bar{f}_i = \frac{1}{\tau} (\bar{u}_i^{\text{RANS}} - \bar{u}_i) \)

\[P_{ij}^f = -\frac{2}{\tau} \bar{u}_i \bar{u}_j' \]

Fluctuations are damped

\[\text{F}{\text{I}{\text{G}}. \text{10}: \text{SEM with mean velocity forcing : friction coefficient. } Re_b = 7000, Ro_b = 0.} \]

\[\text{F}{\text{I}{\text{G}}. \text{11}: \text{SEM with instantaneous velocity forcing : friction coefficient (left) and example of velocity signal in the forcing zone (right).} \]
Straightforward approaches

The relaxation approach is quite intuitive (see Schlüter et al [11]).

- Mean velocity forcing: \(f_i = \bar{f}_i = \frac{1}{\tau} (\overline{u_i^{RANS}} - \overline{u_i}) \), with \(\tau \) a relaxation time

Here, \(\overline{u_i} = \langle \tilde{u}_i \rangle \tilde{\Delta}t \), with \(\langle \cdot \rangle \tilde{\Delta}t \) an exponential time filtering of size \(\tilde{\Delta}t = 10 \frac{k}{\varepsilon} \)

Fig. 10: SEM with mean velocity forcing: friction coefficient. \(Re_b = 7000 \), \(Ro_b = 0 \).

- Instantaneous velocity forcing: \(f_i = \bar{f}_i = \frac{1}{\tau} (\overline{u_i^{RANS}} - \tilde{u_i}) \)

Fig. 11: SEM with instantaneous velocity forcing: friction coefficient (left) and example of velocity signal in the forcing zone (right).

- \(f_i' = 0 \Rightarrow P_{ij}^f = 0 \)
- No significant effect with this forcing

- \(P_{ij}^f = -\frac{2}{\tau} \tilde{u_i}' \tilde{u_j}' \)
- Fluctuations are damped
Straightforward approaches

The relaxation approach is quite intuitive (see Schlüter et al [11]).

- **Mean velocity forcing**: \(f_i = \bar{f}_i = \frac{1}{\tau} (\bar{u}_i^{RANS} - \bar{u}_i) \), with \(\tau \) a relaxation time

 Here, \(\bar{u}_i = \langle \tilde{u}_i \rangle \Delta_t \), with \(\langle \cdot \rangle \Delta_t \) an exponential time filtering of size \(\Delta_t = 10 \frac{k}{\varepsilon} \)

Fig. 10: SEM with mean velocity forcing: friction coefficient. \(Re_b = 7000, Ro_b = 0 \).

- **Instantaneous velocity forcing**: \(f_i = \bar{f}_i = \frac{1}{\tau} (\bar{u}_i^{RANS} - \bar{u}_i) \)

Fig. 11: SEM with instantaneous velocity forcing: friction coefficient (left) and example of velocity signal in the forcing zone (right).
General controlled forcing: formulation

- General fluctuating force written as: \(f_i = A_{ik} \tilde{u}_k + B_i \)
 - \(A_{ij} \) a symmetric tensor (6 components), \(B_i \) a vector (3 components)

\[
\begin{align*}
\vec{f}_i & = A_{ik} \bar{u}_k + B_i \\
P^f_{ij} & = A_{ik} \bar{u}_j \bar{u}_k + A_{jk} \bar{u}_i \bar{u}_k
\end{align*}
\]

- Idea: model \(P^f_{ij} \) (6 equations) and \(\vec{f}_i \) (3 equations) to compute \(A_{ij} \) and \(B_i \).
- Current approach: relaxation

\[
\begin{align*}
A_{ik} \tilde{u}_j \tilde{u}_k' + A_{jk} \tilde{u}_i \tilde{u}_k' & = \frac{1}{\tau} \left(\bar{u}_i' \bar{u}_j'_{\text{RANS}} - \bar{u}_i' \bar{u}_j' \right) \\
A_{ik} \bar{u}_k + B_i & = \frac{1}{\tau} \left(\bar{u}_i'_{\text{RANS}} - \bar{u}_i \right)
\end{align*}
\] \hspace{1cm} (1)

- Ensemble average is approximated by an exponential time filtering of size \(\hat{\Delta}_t = 10^k \frac{\epsilon}{\bar{u}} \)
- (1) solved directly with the LU method at each cell of the overlapping region.
 Then (2) is diagonal.
General controlled forcing: formulation

- General fluctuating force written as: \(f_i = A_{ik} \tilde{u}_k + B_i \)
 - \(A_{ij} \) a symmetric tensor (6 components), \(B_i \) a vector (3 components)

\[
\begin{align*}
\bar{f}_i &= A_{ik} \bar{u}_k + B_i \\
P^f_{ij} &= A_{ik} \bar{u}_j \bar{u}_k + A_{jk} \bar{u}_i \bar{u}_k
\end{align*}
\]

- Idea: model \(P^f_{ij} \) (6 equations) and \(\bar{f}_i \) (3 equations) to compute \(A_{ij} \) and \(B_i \).
- Current approach: relaxation

\[
\begin{align*}
A_{ik} \bar{u}_j \bar{u}_k' + A_{jk} \bar{u}_i \bar{u}_k' &= \frac{1}{\tau} (\bar{u}_i' \bar{u}'^{\text{RANS}} - \bar{u}_i' \bar{u}_j') \\
A_{ik} \bar{u}_k + B_i &= \frac{1}{\tau} (\bar{u}_i^{\text{RANS}} - \bar{u}_i)
\end{align*}
\]

- Ensemble average is approximated by an exponential time filtering of size \(\Delta = 10 \frac{k}{\varepsilon} \)
- (1) solved directly with the LU method at each cell of the overlapping region.
 - Then (2) is diagonal.
General controlled forcing: formulation

- General fluctuating force written as: \(f_i = A_{ik} \tilde{u}_k + B_i \)
 \(A_{ij} \) a symmetric tensor (6 components), \(B_i \) a vector (3 components)

\[
\begin{align*}
\bar{f}_i &= A_{ik} \bar{u}_k + B_i \\
P^f_{ij} &= A_{ik} \bar{u}_j \bar{u}_k + A_{jk} \tilde{u}_i \tilde{u}_k
\end{align*}
\]

- Idea: model \(P^f_{ij} \) (6 equations) and \(\bar{f}_i \) (3 equations) to compute \(A_{ij} \) and \(B_i \).
- Current approach: relaxation

\[
\begin{align*}
A_{ik} \bar{u}_j \tilde{u}_k &+ A_{jk} \tilde{u}_i \tilde{u}_k = \frac{1}{\tau} \left(\bar{u}'_i \bar{u}'_j^{\text{RANS}} - \bar{u}_i \bar{u}_j \right) \quad (1) \\
A_{ik} \bar{u}_k + B_i &= \frac{1}{\tau} \left(\bar{u}'_i^{\text{RANS}} - \bar{u}_i \right) \quad (2)
\end{align*}
\]

- Ensemble average is approximated by an exponential time filtering of size \(\Delta_t = 10 \frac{k}{\varepsilon} \)

- (1) solved directly with the LU method at each cell of the overlapping region.
 Then (2) is diagonal.
Synthetic turbulence + controlled forcing: some results

An upstream periodic RANS computation (EBRSM) coupled by SEM and controlled forcing with a spatially developing LES (Smagorinsky)

\[\tau = \beta \frac{U_b}{L} \] with \(U_b \) the bulk velocity, \(L \) the overlapping length and \(\beta \leq 1 \). Here we chose \(L = 5 \) and \(\beta = 0.5 - 1 \).

Fig. 12: Non rotating case. Friction coefficient (top) and normalized integral error (bottom) of resolved kinetic energy (solid lines) and shear stress (dashed lines).

Fig. 13: Rotating case: \(Ro_b = 1/6, 0.5 \) (profiles are shifted). Mean velocity (top) and resolved kinetic energy (bottom). From left to right: \(x = 5, x = 10, x = 15, x = 30 \).

The controlled forcing allows a better development of the turbulence in the overlapping region, but not significantly out of it.
Controlled forcing without synthetic turbulence

- Sufficient to develop fluctuations
- Useful case for a closer understanding of the forcing effect: work in progress...

Present computation: EBRSM velocity profile at inlet + controlled forcing with $\tau = 1$ all over the LES region

Fig. 14: Mean velocity (left) and resolved kinetic energy (right). $Re_b = 7000$, $Ro_b = 0$.

$\cdots : x = 5$, $\cdots : x = 10$, $\cdots : x = 15$, $\cdots : x = 30$.

Fig. 15: Isocontours of longitudinal fluctuating velocity. $y = 0.99$ (top), $y = 0.8$ (middle), $y = 0$ (bottom)

RANS moments are very well reproduced but, in the core of the channel and near the inflow:

- coherent structures unrealistic
- parasitical frequency on the amplitude of fluctuations

Instantaneous longitudinal velocity signal (\cdots) and time-filtered longitudinal second moment (\cdots)
Plan

1. Introduction
2. Turbulence models sensitive to rotation
3. RANS/LES coupling at inlet boundary using the Synthetic–Eddy Method
4. RANS/LES coupling on overlapping regions: a general controlled forcing
5. Conclusion
Conclusion, future works

Conclusion:

- Systematic confrontation of numerous turbulence models on the rotating channel test case:
 - RANS models: we retain EBRSM for SMC and Spalart-Shur correction + \(k-\omega \) SST for EVM
 - well resolved LES: slight superiority of dynamic Smagorinsky model
- RANS/LES coupling with SEM:
 - efficient for rotating flows
 - importance of SMC (EBRSM) in the upstream RANS region
- Volumic RANS/LES coupling: a new controlled forcing is proposed
 - successfully applied near the LES inflow, in association with SEM at boundary

Future works:

- Controlled forcing:
 - isotropic turbulence test case, tangential coupling (?), ...
 - possible evolution of the formulation

- Generalisation of the RANS/LES coupling (SEM and forcing) to heat fluctuations
Conclusion, future works

Conclusion:
- Systematic confrontation of numerous turbulence models on the rotating channel test case:
 - RANS models: we retain EBRSM for SMC and Spalart-Shur correction + $k-\omega$ SST for EVM
 - well resolved LES: slight superiority of dynamic Smagorinsky model
- RANS/LES coupling with SEM:
 - efficient for rotating flows
 - importance of SMC (EBRSM) in the upstream RANS region
- Volumic RANS/LES coupling: a new controlled forcing is proposed
 - successfully applied near the LES inflow, in association with SEM at boundary

Future works:
- Controlled forcing:
 - isotropic turbulence test case, tangential coupling (?), ...
 ⇒ possible evolution of the formulation
- Generalisation of the RANS/LES coupling (SEM and forcing) to heat fluctuations
Thank you for your attention!
J.-B. Cazalbou, P. Chassaing, G. Dufour, and X. Carbonneau.
Two-equation modeling of turbulent rotating flows.

L. Davidson and M. Billson.
Hybrid les-rans using synthetized turbulence for forcing at the interface.

L. Jacquin, O. Leuchter, C. Cambon, and J. Mathieu.
Homogeneous turbulence in the presence of rotation.

N. Jarrin.
Synthetic inflow boundary conditions for numerical simulation of turbulence.
Reconstruction of turbulent fluctuations for hybrid rans/les simulations using a Synthetic-Eddy Method.

Interface conditions for hybrid rans/les calculations.

Effects of spanwise rotation on the vorticity stretching in transitionnal and turbulent channel flow.

A robust formulation of the v2-f model.

R. Manceau and K. Hanjalić.
Bibliography III

B.A. Pettersson Reif, P.A. Durbin, and A. Ooi.
Modeling rotational effects in eddy-viscosity closures.

Outflow conditions for integrated Large Eddy Simulation/Reynolds-Averaged Navier-Stokes simulations.

P.R. Spalart and M. Shur.
On the sensitization of turbulence models to rotation and curvature.

A. Spille-Kohoff and H.-J. Kaltenbach.
Generation of turbulent inflow data with a prescribed shear-stress profile.