FLUID MECHANICS

Lecture 7 Exact solutions
Scope of Lecture

• To present solutions for a few representative laminar boundary layers where the boundary conditions enable exact analytical solutions to be obtained.
Solving the boundary-layer equations

- The boundary layer equations

\[\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} = 0 \]

\[\rho U \frac{\partial U}{\partial x} + \rho V \frac{\partial U}{\partial y} = -\frac{dP_e}{dx} + \mu \frac{\partial^2 U}{\partial y^2} \]

- Solution strategies:
 - Similarity solutions: assuming “self-similar” velocity profiles. The solutions are exact but such exact results can only be obtained in a limited number of cases.
 - Approximate solutions: e.g. using momentum integral equ’n with assumed velocity profile (e.g. 2nd Yr Fluids)
 - Numerical solutions: finite-volume; finite element,…

- CFD adopts numerical solutions; similarity solutions useful for checking accuracy.
SIMILARITY SOLUTIONS

- Incompressible, isothermal laminar boundary layer over a flat plate at zero incidence (Blasius (1908))

\[
\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} = 0
\]

\[
U \frac{\partial U}{\partial x} + V \frac{\partial U}{\partial y} = \nu \frac{\partial^2 U}{\partial y^2}
\]

\[
U_{\infty} = \text{const.} \quad \frac{dP_e}{dx} = 0
\]

\[
U = V = 0 \text{ at } y = 0;
\]

\[
U \rightarrow U_{\infty} \text{ as } y \rightarrow \infty
\]

- Partial differential equations for \(U\) and \(V\) with \(x\) and \(y\) as independent variables.

- For a similarity solution to exist, we must be able to express the differential equations AND the boundary conditions in terms of a single dependent variable and a single independent variable.
THE SIMILARITY VARIABLE

- Condition of similarity
 \[\frac{U}{U_\infty} = F(\eta) \]

- \(\eta \) is likely to be a function of \(x \) and \(y \)

- Strategy: to replace \(x \) and \(y \) by \(\eta \)

- Similarity variable
 \[\eta = \frac{y}{\delta} \]

- How to find \(\delta \) before solving the equation?
THE SIMILARITY VARIABLE

• To find the order of magnitude of δ

\[
[\text{Re}_L] = O \left(\frac{1}{\delta^2} \right) \quad \delta \to \frac{\delta}{L} \quad [\text{Re}_L] = O \left(\frac{L^2}{\delta^2} \right) \quad L \to x \quad [\text{Re}_x] = O \left(\frac{x^2}{\delta^2} \right)
\]

\[
\rightarrow \quad [\delta] = O \left[\frac{x}{\sqrt{\text{Re}_x}} \right] \quad \text{Re}_x = \frac{U_\infty x}{\nu} \quad \rightarrow \quad [\delta] = O \left[\frac{\sqrt{\nu x}}{U_\infty} \right]
\]

• Similarity variable:

\[
\eta = \frac{y}{O[\delta]} = \frac{y}{\sqrt{\nu x / U_\infty}}
\]
NON-DIMENSIONAL STREAM FUNCTION

• For incompressible 2D flows stream function ψ exists.

\[
U = \frac{\partial \psi}{\partial y} \quad V = -\frac{\partial \psi}{\partial x}
\]

• Strategy: To replace U and V with ψ

• Define a non-dimensional stream function f such that f is a function of η only.
• Find the order of magnitude of stream function ψ

$$U = \frac{\partial \psi}{\partial y}$$

$$[\psi] = O[U_\infty \delta] \quad [\delta] = O\left[\sqrt{\frac{v x}{U_\infty}}\right] \quad [\psi] = O[\sqrt{v U_\infty} x]$$

• Non-dimensional stream function

$$f = \frac{\psi}{\sqrt{v U_\infty} x} \quad \Rightarrow \quad \psi = \sqrt{v U_\infty} x f$$
SIMILARITY SOLUTIONS

• Convert the boundary layer equations

\[
\begin{align*}
\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} &= 0 \\
U \frac{\partial U}{\partial x} + V \frac{\partial U}{\partial y} &= \nu \frac{\partial^2 U}{\partial y^2}
\end{align*}
\]

Automatically satisfied by \(\psi \)

\[
f \frac{d^2 f}{d \eta^2} + 2 \frac{d^3 f}{d \eta^3} = 0
\]

or

\[
f f'' + 2 f''' = 0
\]

Substituting

\[
U = \frac{\partial \psi}{\partial y} \quad V = -\frac{\partial \psi}{\partial x}
\]

\[
\psi = \sqrt{\nu U_\infty x f}
\]

so as to replace \(U, V \) by \(f \)

Let \(\eta = \frac{y}{\delta} = \frac{y}{\sqrt{\nu x / U_\infty}} \)

Replace \(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial y^2} \)

by derivatives WRT \(\eta \)
Some details of analysis

• Thus with: \(\psi \equiv \sqrt{\nu x U_{\infty}} f(\eta) \quad \eta \equiv y \frac{\sqrt{U_{\infty}}}{\nu x} \)

• we find: \(U = \frac{\partial \psi}{\partial y} = \frac{\partial \psi}{\partial \eta} \frac{\partial \eta}{\partial y} = \sqrt{\nu x U_{\infty}} f'(\eta) \sqrt{\frac{U_{\infty}}{\nu x}} = U_{\infty} f' \)

\[
V = -\frac{\partial \psi}{\partial x} = \frac{1}{2} \sqrt{\frac{\nu U_{\infty}}{x}} (\eta f' - f) ; \quad \frac{\partial U}{\partial y} = \frac{\partial U}{\partial \eta} \frac{\partial \eta}{\partial y} = U_{\infty} f'' \sqrt{\frac{U_{\infty}}{\nu x}}
\]

• So finally: \(f f'' + 2 f''' = 0 \)

• with b.c.’s \(\eta = 0: f = f' = 0; \eta \to \infty: f' \to 1 \)
SIMILARITY SOLUTIONS

• Substituting into the boundary layer equation

\[
U \frac{\partial U}{\partial x} + V \frac{\partial U}{\partial y} = \nu \frac{\partial^2 U}{\partial y^2}
\]

\[
f \frac{d^2 f}{d \eta^2} + 2 \frac{d^3 f}{d \eta^3} = 0
\]

or

\[
f f'' + 2 f''' = 0
\]

3rd order ordinary differential equation

\[
\begin{cases}
\text{at wall } \psi = 0, \text{ hence } f = \frac{\psi}{\sqrt{\nu U_{\infty} x}} = 0 \\
\text{at wall } U = 0, \text{ hence } f' = \frac{U}{U_{\infty}} = 0 \\
\text{at } y = \infty, \ U = U_{\infty}, \text{ hence } f' = \frac{U}{U_{\infty}} = 1
\end{cases}
\]
The tabulated Blasius velocity profile can be found in many textbooks
VELOCITY PROFILES

\[\frac{U}{U_\infty} = f'(\eta) \]

\[\delta \left(\frac{U_\infty}{v_x} \right) \]

\[\eta = y \sqrt{\frac{U_\infty}{v_x}} \]

\[\frac{V}{U_\infty} \sqrt{\frac{U_\infty x}{v}} \]

\[\eta = y \sqrt{\frac{U_\infty}{v_x}} \]

\[V \text{ is much smaller than } U. \]
DISPLACEMENT AND MOMENTUN THICKNESS

- Boundary layer thickness
 \[\delta = \frac{5x}{\sqrt{\text{Re}_x}} \]

- Displacement thickness
 \[\delta^* = \int_0^\infty \left(1 - \frac{U}{U_\infty}\right) dy = \frac{\partial y}{\partial \eta} \int_0^\infty \left(1 - f'\right) d\eta = 1.7208 \sqrt{\frac{\nu x}{U_\infty}} \]
 \[\delta^* = \frac{1.7208x}{\sqrt{\text{Re}_x}} \]

- Momentum thickness
 \[\theta = \int_0^\infty \frac{U}{U_\infty} \left(1 - \frac{U}{U_\infty}\right) dy = \frac{\partial y}{\partial \eta} \int_0^\infty f' \left(1 - f'\right) d\eta = 0.664 \sqrt{\frac{\nu x}{U_\infty}} \]
 \[\theta = \frac{0.664x}{\sqrt{\text{Re}_x}} \]

- \(\delta, \delta^*, \theta \) all grow with \(x^{1/2} \)
 - \(\delta^*/\delta = 0.344, \theta/\delta = 0.133 \)
DISPLACEMENT AND MOMENTUN THICKNESS

- Typical distribution of δ, δ^* and θ

$U_\infty = 10 \text{ m/s}, \quad v = 17 \times 10^{-6} \text{ m}^2/\text{s}$

![Graph showing the variation of δ, δ^*, and θ with x]
Other Useful Results

• Shape factor:

\[\delta^* = \frac{1.7208x}{\sqrt{\text{Re}_x}}, \quad \theta = \frac{0.664x}{\sqrt{\text{Re}_x}} \quad \Rightarrow \quad H = \frac{\delta^*}{\theta} = 2.59 \]

• Wall shear stress:

\[C_f = \frac{\tau_w}{\frac{1}{2} \rho U^2} = \frac{\mu}{\frac{1}{2} \rho U^2} \left(\frac{\partial U}{\partial y} \right)_w = 2 f''(0) \sqrt{\frac{\nu}{U\infty x}} = 0.664 \sqrt{\frac{\nu}{\text{Re}_x}} \]
Short Problem

The boundary layer over a thin aircraft wing can be treated as that over a flat plate. The speed of the aircraft is 100m/s and the chord length of the wing is 0.5m. At an altitude of 4000m, the density of air is 0.819kg/m3 and the kinematic viscosity is 20×10^{-6}m2/s, Assuming the flow over the wing is 2D and incompressible,

- Calculate the boundary-layer thickness at the trailing edge
- Estimate the surface friction stress at the trailing edge
- Will the boundary layer thickness and friction stress upstream be higher or lower compared to those at the trailing edge?
- What will be the boundary-layer thickness and the surface friction stress at the same chord location if the speed of the aircraft is doubled?
SOLUTIONS

• The Reynolds number at $x=0.5m$:

$$\text{Re}_x = \frac{Ux}{\nu} = \frac{100 \times 0.5}{20 \times 10^{-6}} = 2.5 \times 10^6$$

• The boundary layer thickness:

$$\delta = \frac{5x}{\sqrt{\text{Re}_x}} = \frac{5 \times 0.5}{\sqrt{2.5 \times 10^6}} = 0.0016m$$

• Friction stress at trailing edge of the wing

$$\tau_w = 0.5 \rho u^2 C_f$$

$$= 0.5 \rho u^2 \frac{0.664}{\sqrt{\text{Re}_x}}$$

$$= \frac{0.5 \times 0.819 \times 100^2 \times 0.664}{\sqrt{2.5 \times 10^6}} = 1.72N/m^2$$
Will the boundary layer thickness and friction stress upstream higher or lower compared to those at the trailing edge?

- δ is smaller upstream as δ is proportional to $x^{1/2}$
- τ_w is higher upstream as δ is thinner.

If the speed of the aircraft is doubled, Re_x will be doubled since $Re_x = \frac{Ux}{\nu}$

- δ will be smaller as Re increases. $\delta = \frac{5x}{\sqrt{Re_x}}$
- τ_w will be higher as the increase in u_∞ has a greater effect than the increase in Re_x.

$$\tau_w = 0.5 \rho u_\infty^2 \frac{0.664}{\sqrt{Re_x}}$$
Plane stagnation flow

- Flows with pressure gradients can be self-similar ... but it has to be a pressure gradient compatible with self-similarity. See Schlichting and other “advanced” textbooks on fluid mechanics for examples.
- Stagnation flow provides one such example where
 \(U_e = U_0 x / L \) and \(V_e = -U_0 y / L \) (potential flow)
- Note \(-\frac{1}{\rho} \frac{dP_e}{dx} = U_e \frac{dU_e}{dx} \) by Euler equ’n.
- The boundary layer equation thus becomes:
 \[
 U \frac{\partial U}{\partial x} + V \frac{\partial U}{\partial y} = \frac{U_0^2}{L} \frac{x}{L} + \nu \frac{\partial^2 U}{\partial y^2}
 \]
- or \(f'''' + fff'' + 1 - f' ^2 = 0 \)
- Here primes denote diff’n wrt \(\eta \equiv y \sqrt{ \frac{U_0}{\nu L} } \)
Stagnation flow results

• Note that the boundary layer has a constant thickness!
• However, the mass within the boundary layer increases continuously since the velocity rises linearly with distance from the stagnation point.
• Unlike the flat-plate boundary layer, the shear stress decreases continuously from the wall.
• For this flow $H = \delta*/\theta = 2.21$ i.e. less than for the zero-pressure-gradient boundary layer.
Asymptotic Suction Flow

- Sometimes it may be desirable to withdraw fluid through the wall

- If the suction is uniform a point is reached where the boundary layer no longer grows with distance downstream and no further change with x occurs.

- Thus the continuity equation is just $\partial V/\partial y = 0$, i.e. $V = -V_w$

- The x-momentum equation becomes:

$$-V_w \frac{dU}{dy} = \nu \frac{d^2 U}{dy^2}$$

- ...which is readily integrated to give

$$\frac{U}{U_\infty} = 1 - \exp\left(-\frac{y V_w}{\nu}\right)$$

- A question for you: What is the skin friction coefficient?