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Abstract The heating and cooling processes of sodium-sulphur (NaS) batteries in a laboratory furnace 

are investigated from room temperature to 340°C. The heating and cooling of the battery is modelled 

in MATLAB by discretizing the Fourier equation using the fully implicit backward finite difference 

method. The Stefan problem with regards to the phase change is approximated with the apparent heat 

capacity method [1]. The aim of the modelling is to shorten start up time and increase efficiency. 
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1. INTRODUCTION 

 

Figure 1: Battery diagram. 

The sodium-sulphur battery comprises four layers: an inner core of sodium (𝑁𝑎), a beta alumina 

dividing membrane (𝛽), an annulus of sulphur (𝑆) and an outer steel casing (𝑆𝑡). The battery is heated 

in an insulated furnace at a constant rate and allowed to cool naturally. The furnace is heated from room 

temperature up to 300-350℃, at which the electrical charging and discharging of the battery occur.  The 

sodium melts at 97.8℃, and the sulphur at 115℃. The sulphur electrode has the biggest influence on 

heat transfer, as it has the highest thermal resistance. To avoid problems, the sodium and the sulphur 

melting phases are desired to not overlap. Convection in the furnace is ignored, as the battery is heated 

and cooled by thermal radiation effects. Experimental data of furnace and battery temperatures have 
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been collected over the complete cycle and the predictions of the temperatures of the battery layers by 

a numerical simulation are presented. 

2. EXPERIMENTAL PROCEDURE 

Table 1: Battery specifications. 

Parameters Values 

Sodium layer radius (𝑟1) 7.7 mm 

Radius up to the beta alumina layer (𝑟2) 9.7 mm 

Radius up to the sulphur layer (𝑟3) 13.3 mm 

Battery radius (𝑟4 = 𝑅) 16 mm 

 

The furnace battery apparatus that is desired to model is used to fit the cooling data. This is done in 

order to simplify the model, as the experimental data will encapsulate all the factors associated with 

natural cooling. The battery is heated based on the recommended specifications where the battery is 

initially heated from room temperature to 100℃ at 1℃ per minute. Then the furnace temperature is held 

constant for 1 hour to allow for the sodium to melt prior to heating again at 1℃ per minute to 160℃. 

After reaching 160℃ the furnace temperature is held constant again to allow for the sulphur layer to 

melt. Finally, the furnace temperature is increased to 340℃ at 1℃ per minute to reach an operational 

battery temperature. The furnace temperature is kept constant for an hour in order to equilibrate the 

temperature of the battery prior to natural cooling. During the experiment, a thermocouple and a data 

logger are used to measure and log the furnace temperature. The data for the battery furnace temperature 

during cooling is regressed, and incorporated in the model based on the fitted experimental equation 

equ. (11) to represent the cooling temperature profile. 

3. MATHEMATICAL MODEL 

     The mathematical model is constructed with the assumptions that conduction occurs with radial 

symmetry in an infinitely long cylinder and the four layers are in intimate contact and thermal radiation 

occurs to and from the steel casing and the furnace. The 2D Fourier equation in (t,r) for a very long 

cylinder equ. (1) is applied for each layer comprising the battery with i = 1, 2, 3 and 4 for the 

sodium, beta alumina, sulphur and steel casting respectively.  
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with an initial condition: 

at 𝑡 ≤ 0, 𝑇𝑖 = 𝑇𝑓 = 𝑇𝑖𝑛  over 0 ≤ 𝑟1 ≤ 𝑟2  ≤ 𝑟3 ≤ 𝑟4 = 𝑅 (2) 
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and finally, 𝑇𝑓 = fn (𝑡)  (5) 

 



 
 

For the phase changes that occur in layers 1 and 2 (sodium and sulphur), equ. (1) is used to represent 

the Stefan problem. The heat capacity is increased to account for the latent heat over a small 

temperature interval by equ. (6) [1]as follows: 

𝑐𝑎𝑝𝑝 = (∫ 𝑐p d𝑇 + ℎsf 
𝑇2sf

𝑇1sf

) (𝑇2sf − 𝑇1sf)⁄  
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where 𝑐𝑎𝑝𝑝 is the apparent heat capacity, ℎsf is the latent heat of fusion and the phase change occurs 

over the small temperature interval (𝑇2sf − 𝑇1sf). 

The thicknesses of the beta alumina and the steel casting are much smaller than the other layers and with 

relatively large values of thermal conductivity are represented by average temperature values - �̃�2 and 

�̃�4 respectively. The average temperatures are defined as follows with i = 2 and 4: 
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(7) 

Combining equ. (7) with equ. (1) and equs (4) for i = 2 results in an ordinary differential equation for 

the average temperature of the beta alumina layer as follows: 
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(8) 

and for the steel casting, combining equ. (7) with equ. (1), equs (4) and (5) for i = 4 provides the 

following equation for the average temperature of the steel casting: 
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where the radiative heat transfer coefficient 𝛼𝑟𝑎𝑑 has been introduced into equ. (5) and is defined as  

𝛼𝑟𝑎𝑑 = ℱ4→𝑓𝜎(𝑇4
4 − 𝑇𝑓

4) (𝑇4 − 𝑇f)⁄  (10) 

  

The cooling temperature profile is represented by the following fitted equation: 

      𝑇𝑓 = 5.284 × 10−17 × 𝑡4 − 8.774 × 10−12 × 𝑡3 + 5.982 × 10−7 × 𝑡2

− 0.02077 × 𝑡 + 340 

(11) 

  

where the adjusted R square is 0.9995 and t is the time starting when the furnace heating has been 

turned off.  

The complete set of partial and ordinary differential equations are overall non-linear due to the radiative 

transfer of heat. The equations (1) to (5), (8) and (9) are solved numerically using the fully implicit back 

methodology [2] and the ordinary different equations by back difference approximation. Iteration at 

every time increment is required until the radiation heat transfer coefficient 𝛼𝑟𝑎𝑑  agrees to a tolerance 

of 0.001 W m-2 K-1. The set of algebraic equations were determined to be stable based on von Neumann’s 

method [2]. The numerical solution was developed using MATLAB software and run on a desk top 

computer with 16 GB ram and computing times for simulations of 18 hours of experimental data took 

6.5 hours. 



 
 

4. RESULTS 

  

Figure 2: The modelled heating (2℃/min) and cooling of the sodium sulphur battery. 

The mathematical model has been used to simulate a multitude of heating scenarios from 25℃ up 

to 340℃. Previously, the recommended safe operating regime was heating at 1℃ per minute up to 

100℃, hold for 1 hour, then heat again at 1℃ per minute up to 160℃ and hold for 1 hour, and then, 

finally heat again at 1℃ per minute until 340℃ is reached.  At this point, the system was allowed to 

come to thermal equilibrium before cooling occurred naturally. Unfortunately, the duration of the 

heating part of the cycle was too long for safe University laboratory practice – heating combustible 

materials outside normal hours and thus the simulation has been used to predict the possible safe heating 

regimes in much shorter time. The heating was simulated with and without holding the furnace 

temperature constant over the melting temperature regimes until each layer is fully melted. Holding the 

furnace temperature was found to be unnecessary at heating the battery. Heating rates of 2℃/min and 

3℃/min were found to be effective at heating the battery relatively quickly and efficiently without any 

overlap between the phase changing regimes of the sodium and sulphur.  

Results obtained from heating at 2℃/min are presented in figures 2 and 3 respectively. In figure 2, 

the rate of heating of the sodium layer increases gradually in the beginning, as the intermediate layers 

are starting to heat up from room temperature. After steadily heating the layers the heating rate of the 

sodium layer becomes constant until the phase changing regime is reached. The sodium core temperature 

remains constant during the phase change, which matches expectations of what would happen. After 

reaching a furnace temperature of 340℃ the furnace temperature is kept constant for an hour to replicate 

the experimental procedure to equilibrate the temperatures before the natural cooling of the furnace 

occurs. The cooling temperature profile in the simulation is based on the fitted experimental data from 

equation (11). During cooling two distinct flat regions are observed in the sodium core temperature, 

which coincide with the phase changing regimes. The radiation heat transfer coefficient is highly 

correlated with the rising and falling of the furnace temperature, which is due to the high dependence 

on temperature in equation (10). 



 
 

                 

Figure 3: A multitude of battery temperature profiles during heating (a) (2℃/min) and cooling (b) where the yellow shading 

is the sodium layer, the blue shading is the beta alumina layer, the red shading is the sulphur layer, the green shading is the 

steel layer, 𝑇𝑓 is the furnace temperature and the horizontal dash-dot lines represent the phase change temperatures. 

In figure 3, the temperature profile across the sulphur layer is the largest, because it has the lowest value 

of thermal conductivity and thus, the largest thermal resistance in the battery. Moreover, the temperature 

gradient widens at the phase changing regimes, due to the latent heating. The heating process has larger 

gradients compared to the cooling process, as the battery is externally heated at a higher rate compared 

to the natural cooling rate. The total heating times at 2℃/min and 3℃/min are 2.63 and 1.75 hours 

respectively, which are considerably less than the earlier procedure of approximately 7 hours. 

5. CONCLUSIONS 

In conclusion, a model that simulates the heating and cooling of NaS batteries is developed, by 

discretizing Fourier’s law of conductivity using the fully implicit backward Euler method. The model 

can be used to examine the temperature profile of the battery at different heating stages and recommend 

heating procedures. It was shown that heating NaS batteries at 2℃/min and 3℃/min would provide fast 

and efficient start up without overlapping the phase changing regimes. The results represent a significant 

improvement to the current heating process and enables more time to investigate the charging and 

discharging of the battery at the high temperature during a full day in the laboratory 
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NOMENCLATURE 

Symbol Definition 

Roman 

𝑐𝑝 

 

Specific heat capacity (J kg-1 K-1) 

𝑐𝑎𝑝𝑝 Apparent heat capacity (J kg-1 K-1) 

ℱ View factor 

𝑓 Furnace 

ℎ𝑠𝑓 Latent heat of fusion (J kg-1) 

𝑁𝑎 Sodium 

𝑁𝑎𝑆 Sodium-sulphur 

𝑅 Battery radius (m) 

𝑟 Radius (m) 

𝑆 Sulphur 

𝑆𝑡 Steel 

𝑇 Temperature (K or ℃) 

𝑡 Time (s) 

Greek 

𝛼 

 

Radiative heat transfer coefficient 

(W m-2 K-1) 

𝛽 Beta-alumina 

𝜆 Thermal conductivity (W m-1 K-1) 
𝜌 Density (kg m-3) 

𝜎 Stefan-Boltzmann constant         

(W m-2 K-4) 

Superscripts 

~ 

 

Average  

Subscripts 

𝑖 
 

Layer index  
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