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1. INTRODUCTION 

The transition towards more sustainable energy use and production relates to the ability of 

recovering as much heat as possible and to provide storage to handle the heat available from waste 

streams or that generated from renewables. Packed beds can be used as heat sinks to store energy and 

help spreading the use of renewables [1, 2]. Meanwhile, new concepts to enhance the integration of heat 

are being studied. This is the case of fixed bed reactors packed with multiple refractory materials acting 

as sink or source of energy [3]. Models of these type of systems have so far been addressed considering 

a pseudo-homogeneous behaviour [4], thus discarding the inter-pellet and intra-pellet thermal 

resistances to heat transfer. This might prove unrealistic, and, in this discourse, we develop a modelling 

framework for the heat transfer model without considering heat generation or dissipation. The proposed 

approach explicitly accounts for the inter- and intra-pellet resistances to heat transfer in packed beds 

comprising two different types of pellets and can be further extended to model complex systems 

involving simultaneous reaction and adsorption. 

2. METHODOLOGY 

The method utilised is entirely computational. Two mathematical representations are developed: 

distributed and lumped parameter models. Both models are solved numerically by developing in-house 

solutions by finite difference approximations using MatlabTM, and also, by applying the method of lines 

and generating simulations by gPROMSTM.  

3. MODEL 

The investigated system consists of a cylindrical vessel randomly packed with a mixture of two 

types of pellets exhibiting different refractory properties and exchanging heat with a flowing stream of 

gas. Figure 1 depicts schematically the system to be modelled.  

 

Figure 1: Schematic representation of a packed bed with two different packings indicating the domains of interest at: (a) the 

packed bed level and (b) the particle level. 

The assumptions specified for the distributed parameter model of this heterogeneous system are: an 

adiabatic packed bed, plug flow, a mean bed voidage, a large bed length to diameter ratio, axial and 

radial thermal dispersions are negligible and all physical properties are invariant. The temperatures of 

17th UK Heat Transfer Conference (UKHTC2021) 
4-6 April 2022, Manchester, UK 

 



 
 

the gas 𝑇 and the pellets 𝑇𝑖 in the region of interest 𝑡 > 0, 0 ≤ 𝑧 ≤ 𝐿𝑏 and 0 < 𝑟𝑖 < 𝑅𝑖 , where i = 1 or 2 

are mathematically represented as follows: 

 
𝜀𝑏𝜌𝑔𝐶𝑝,𝑔

𝜕𝑇

𝜕𝑡
+ 𝑢𝑔𝜌𝑔𝐶𝑝,𝑔

𝜕𝑇

𝜕𝑧
= −𝛼1𝑎𝑆1

(𝑇 − 𝑇1|𝑟1=𝑅1
) − 𝛼2𝑎𝑆2

(𝑇 − 𝑇2|𝑟2=𝑅2
) (1) 

The temperature within the pellets 𝑇𝑖 are described by  

 
𝜌𝑝𝑖

𝐶𝑝𝑖

𝜕𝑇𝑖

𝜕𝑡
= 𝜆𝑝𝑖

(
𝜕2𝑇𝑖

𝜕𝑟𝑖
2 +

2

𝑟𝑖 

𝜕𝑇𝑖

𝜕𝑟𝑖
) (2) 

with boundary conditions: 

 −𝜆𝑝𝑖

𝜕𝑇𝑖

𝜕𝑟𝑖
|

𝑟𝑖=𝑅𝑖

= 𝛼𝑖(𝑇𝑖|𝑟𝑖=𝑅𝑖
− 𝑇)  and  

𝜕𝑇𝑖

𝜕𝑟𝑖
|

𝑟𝑖=0
= 0 (3) 

where 𝛼𝑖 are the heat transfer coefficients, 𝑎𝑆𝑖
 are the available areas for heat transfer per unit of volume 

of bed,  𝑢𝑔, 𝜌𝑔 and 𝐶𝑝,𝑔 are the gas superficial velocity, the density and the  specific heat capacity, 

respectively, 𝜌𝑝𝑖
, 𝐶𝑝𝑖

 and 𝜆𝑝𝑖
are the combined gas and solid densities, specific heat capacities and 

thermal conductivities of the pellets, respectively. 

        The surface areas 𝑎𝑆𝑖
 are defined as: 

 
𝑎𝑆𝑖

=
6𝛾𝑖(1 − 𝜀𝑏)

𝑑𝑝,𝑖
  (4) 

where 𝛾𝑖 are the volumetric fractions of the pellets within the bed, 𝜀𝑏 is the mean voidage of the bed and 

𝑑𝑝,𝑖  are the diameters of equivalent volume spherical pellets. 

Equations (1) – (4) are solved for a square-step forcing function; the initial state of the system is that 

of a thermal equilibrium between the pellets and the gas, these conditions are represented as: 

 𝑇(0, 𝑡) = 𝑇𝑖𝑛 and    𝑇(𝑥, 0) = 𝑇𝑖(𝑥, 𝑟𝑖, 0) = 𝑇0 (5 & 6) 

An equivalent pseudo-homogeneous (lumped parameter) representation is obtained from equations 

(2) and (3) by introducing average temperatures 𝑇̃𝑖 for the pellets defined as follows:  

 
𝑇̃𝑖 = 3 ×  (∫ 𝑇𝑖(𝑟)𝑟2

𝑅𝑖

0

d𝑟) 𝑅𝑖
3⁄  (7) 

The temperatures for each packing are now given by  

𝜌𝑝𝑖
𝐶𝑝𝑖

𝜕𝑇̃𝑖

𝜕𝑡
=

3𝛼𝑖

𝑅𝑖
(𝑇 − 𝑇𝑖|𝑟𝑖=𝑅𝑖

) ≡ 𝛼𝑖𝑎𝑆𝑖
(𝑇 − 𝑇𝑖|𝑟𝑖=𝑅𝑖

) (8) 

For the lumped model, the surface pellet temperatures 𝑇𝑖|𝑟𝑖=𝑅𝑖
 in equations (1) and (8) are replaced by 

average pellet temperatures 𝑇̃𝑖, which implies very small Biot numbers, Bi𝑖 = 2 𝛼𝑖𝑅𝑖 𝜆𝑝𝑖
⁄  equivalent to 

combinations of large values of the thermal conductivity, small packing sizes and small heat transfer 

coefficients. The pseudo-homogeneous (lumped) model is represented by modified forms of equations 

(1) and (8) along with equations (4), (5) and (6). This set of equations is equivalent to the well-known 

Schumann model, but with two different packings [5].  



 
 

The model equations (1), (2) and (8) presented are transformed from the Eulerian to the Lagrangian 

co-ordinates by the following transformation:  

 𝜏 = 𝑡 −
𝑧

𝑢𝑖
 (9) 

The fluid energy conservation equation equation (1) is now represented in Lagrangian co-ordinates 

as: 

 
𝑢𝑔𝜌𝑔𝐶𝑝,𝑔

𝜕𝑇

𝜕𝑧
= −𝛼1𝑎𝑆1

(𝑇 − 𝑇1|𝑟1=𝑅1
) − 𝛼2𝑎𝑆2

(𝑇 − 𝑇2|𝑟2=𝑅2
) (10) 

and time 𝑡 is replaced in equations (2), (5) and (8) by 𝜏, which is defined as the Eulerian time minus 

the residence time of the gas within the bed in the transformation equation (9). 

3.1 Model solution 

 Both the heterogeneous and pseudo-homogeneous models are solved numerically. The Lagrangian 

form of equation (10) is approximated by a 2nd order central difference approximation in both solutions 

and equations (2) for the heterogeneous solution by the fully implicit backward (FIB) finite difference 

scheme. Similarly, the two equations (8) for the pseudo-homogeneous solution also represented by a 2nd 

order central difference approximation. These numerical schemes are extensions to those presented by 

Handley and Heggs [6], but only details of the heterogeneous solution are presented, because in the 

present work the FIB numerical scheme has replaced the original Crank-Nicolson approximation [6] for 

equation (2).  

The computational domain of the heterogeneous problem is represented by a three-dimensional (3D) 

mesh, which is subdivided into three separate domains namely: a plane defined by the axis 𝑁 − 𝐼 which 

physically represents the space-time region bounded by the period time 𝜏 and the bed length 𝐿, and the 

3D regions formed by the axis 𝑁 − 𝐼 − 𝑀 and 𝑁 − 𝐼 − 𝑃, which incorporate the space region for each 

pellet radius 𝑟1 and 𝑟2. In these coordinated systems, 𝑁 is the number of nodes for the time period and 

𝐼 is the number of nodes along the bed length, and 𝑀 and 𝑃 are the number of nodes within each radius 

of the pellets 1 and 2 respectively.  

The solution for the gas temperature 𝑇𝑖
𝑛+1 at each node of the plane 𝑁 − 𝐼 proceeds simultaneously with 

the solution for the solid temperatures 𝑇1𝑗
𝑛+1,𝑖 and 𝑇2𝑘

𝑛+1,𝑖 at the nodes of each row in the regions 

bounded by the axes 𝑁 − 𝐼 − 𝑀 and 𝑁 − 𝐼 − 𝑃; where the superscripts 𝑛, 𝑖 represent the time and length 

coordinates of the gas and solid temperatures within the computational mesh, and the subscripts 𝑗, 𝑘 

represent the spatial coordinates of the solid temperatures nodes.  

By applying the second order central differences discretisation to equation (10), the following 

algebraic expression is obtained:   

 −𝐴1𝑇1𝑚
𝑛+1,𝑖 + [2 + 𝐴1 + 𝐴2]𝑇𝑖

𝑛+1 − 𝐴2𝑇2𝑝
𝑛+1,𝑖

= [2 − 𝐴1 − 𝐴2]𝑇𝑖−1
𝑛+1 + 𝐴1𝑇1𝑚

𝑛+1,𝑖−1 + 𝐴2𝑇2𝑝
𝑛+1,𝑖−1 

(11) 

where 𝑇1𝑚
𝑛+1,𝑖 , 𝑇1𝑚

𝑛+1,𝑖−1, 𝑇2𝑝
𝑛+1,𝑖 and 𝑇2𝑝

𝑛+1,𝑖−1  are the temperatures on the surfaces of the pellets, 

and  𝐴1, 𝐴2 are solution constants dependent upon the fluid and particle properties, the heat transfer 

coefficient, the axial step-size ∆𝑧, and their definitions are:  



 
 

 
𝐴1 =

𝛼1𝑎𝑆1
∆𝑧

𝑢𝑔𝜌
𝑔

𝐶𝑝

  and 𝐴2 =
𝛼2𝑎𝑆2

∆𝑧

𝑢𝑔𝜌
𝑔

𝐶𝑝

 (12) 

Equation (2) is discretised for each particle by the FIB discretisation scheme - the backward 

discretization of the time derivative and the application of central differences to the spatial derivative at 

the time 𝑛 + 1, yielding the following algebraic equation applicable to the interior nodes of each pellet, 

so i = 1 or 2 in the following set of equations:  

 
− (1 +

1

𝑘𝑖
) 𝑀𝑖𝑇𝑖𝑘𝑖+1

𝑛+1,𝑗 + (1 + 2𝑀𝑖)𝑇𝑖𝑘𝑖

𝑛+1,𝑗 − (1 −
1

𝑘𝑖
) 𝑀𝑖𝑇𝑖𝑘𝑖−1

𝑛+1,𝑗 = 𝑇1𝑘𝑖

𝑛,𝑗 (13) 

At the centre of the pellet the application of the symmetry condition in equation (3) produces the 

following algebraic equation: 

 −6𝑀𝑖𝑇𝑖1
𝑛+1,𝑗 + (1 + 6𝑀𝑖)𝑇𝑖0

𝑛+1,𝑗 = 𝑇𝑖0
𝑛,𝑗 (14) 

whereas at the surface of the particle, the boundary condition at 𝑟𝑖 = 𝑅𝑖 expressed in equation (3) is 

approximated by central difference formula and then combined with equation (13) at the surface to 

eliminate a fictitious node outside the region of interest to provide the following equation:  

 
− (1 +

1

𝑚𝑖
) 𝐶𝑖𝑀𝑖𝑇𝑖

𝑛+1
+ [1 + 𝑀𝑖 (2 + (1 +

1

𝑚𝑖
) 𝐶𝑖)] 𝑇𝑖𝑚𝑖

𝑛+1,𝑗
− 2𝑀𝑖𝑇𝑖𝑚𝑖−1

𝑛+1,𝑗
= 𝑇𝑖𝑚𝑖

𝑛,𝑗 (15) 

where 𝑀𝑖 are functions of both the fluid and the packings’ properties, as well as of the step-sizes for 

time ∆𝜏, axial space ∆𝑧 and radial space ∆𝑟𝑖, where 𝑖 = 1,2 depending on the type of packing and are 

defined as follows: 

 
𝑀𝑖 =

𝜆𝑝𝑖

𝜌
𝑝𝑖

𝐶𝑝𝑖

∆𝜏

(∆𝑟𝑖)2
 

(16) 

       The equations (11), (13), (14) and (15) form a linear system of equations 𝐴𝑥 = 𝑏, where 𝐴 is a 

tridiagonal matrix, x is a vector of the unknown temperatures and b is a vector of known temperatures. 

The unknown temperatures are obtained by employing the Thomas algorithm. The pair of numerical 

schemes and their solutions were developed and implemented in MatlabTM, and also, solutions were 

developed and obtained using the method of lines in the gPROMSTM software. 

4. RESULTS 

4.1 Convergence of the solution. 

The convergence of the proposed numerical solution was analysed by varying the number of mesh 

nodes within the spatial coordinates (𝑛𝑟1, 𝑛𝑟2 and 𝑛𝑧) at a fixed time step-size of ∆𝜏 = 0.1s and 

observing the deviation of the output from the solution obtained from gPROMSTM. The computational 

experiments for the convergence analysis were run for a mixture of alumina and calcium oxide packings 

of equal size (0.0092m) with 𝛾1 = 0.25 and 𝛾2 = 0.75, where 𝛾i represents the volumetric fraction of 

of a packing in the bed. The studied system was a packed bed of 1 m in length exchanging heat with a 

hot gas stream with mass flux 𝐺 = 7.61 kg m−2s−1 and heat capacity 𝐶𝑝𝑔
= 2597.7 J kg−1K−1; the 

packings properties and other parameters utilised in the simulations are summarised in Table 1.  

Figure 2(a) and (b) illustrate the evolution of the breakthrough when the number of points utilised 

to discretise the bed length and the particles’ radii are set to 5, 10, 20 and 50. To conduct the exercise 

the number of points of the three spatial domains was set to be equal. It is remarkable how fast the 

numerical scheme seems to converge to the solution from gPROMSTM; by setting 𝑛𝑟1, 𝑛𝑟2 and 𝑛𝑧 to 20 



 
 

the solution exhibits an average error ranging from 0.686% to 0.691% for the case of 25%v/v of alumina 

in the packed bed and ranging from 0.603% to 0.607% for the case of 75%v/v of alumina in the mixture 

of packings; this confirms that the proposed scheme is stable and convergent, and in fact very 

competitive considering that the time step-size was not optimised as opposed to the way gPROMSTM 

handles its algorithm.  

Table 1. Simulation parameters utilised in all computational experiments in this investigation. 

Packing 
𝜌𝑝𝑖

 

(𝑘𝑔 𝑚−3) 

𝐶𝑝𝑖
 

(𝐽 𝑘𝑔−1𝐾−1) 

𝜆𝑝𝑖
 

(𝐽 𝑚−1𝑠−1𝐾−1) 

𝛼𝑖 

(𝐽 𝑚−2𝑠−1𝐾−1) 

𝑎𝑆𝑖
 

( 𝑚2𝑚−3) 

𝛾𝑖 

( 𝑚3𝑚−3) 

𝜀𝑏 

( 𝑚3𝑚−3) 

Alumina 3630 1240.7 2.1 1366.8 409.8 0.25/0.75 0.37 

Calcium 

Oxide 
3340 943.4 8.5 1366.8 409.8 0.75/0.25 0.37 

The average error was calculated based on the actual value of the gas breakthrough temperature to 

avoid the magnification of the error magnitude due to the small values of the dimensionless temperature; 

the following formula was applied: 

 
𝐸𝑟𝑟𝑜𝑟 =  

1

𝑛
∑ (1 −

𝑇𝐹𝐼𝐵

𝑇𝑔𝑃𝑅𝑂𝑀𝑆

)

𝑘

𝑛=1

 (17) 

 

Figure 2: (a) Convergence of the FIB numerical scheme for packed bed with 25%v/v of alumina and 75%v/v of calcium oxide. 

(b) Convergence of the FIB numerical scheme for packed bed with 75%v/v of alumina and 25%v/v of calcium oxide.  

4.2  Application of the model to simulate the heating of a fixed bed packed with 

mixtures of refractory packings. 

The model was utilised to simulate the heat transfer in several packed beds with different volumetric 

fractions of packing types 1 and 2. Figure 3(a) is a plot of the breakthrough curves obtained with the 

heterogeneous model in dimensional form for each of the cases simulated; for comparison purposes the 

output of the pseudo-homogeneous model is also plotted. It is evident from Figure 3(a) that the effect of 

the volumetric fraction of alumina on the breakthrough curve is twofold, on one hand, augments the 

time required to saturate the bed to the temperature of the incoming gas. On the other hand, a higher 

degree of dispersion is observed as the presence of this material in the packed bed increases. Figure 3(b) 

is a plot of the temperature profiles of the packing types 1 and 2 as function of time and axial position 

for a 50%/50% mixture of alumina and calcium oxide spherical packings. Since both materials have 

been assumed to have the same size, they exhibit the same heat transfer area and heat transfer coefficient, 

however, the alumina packings exhibit a higher density than the calcium oxide ones. Hence, Figure 3(b) 

reflects how the less dense material will reach the saturation temperature first. 
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Figure 3: (a) Breakthrough curves in dimensional form of various fixed beds packed with different volumetric fractions of a 

mixture of alumina and calcium carbonate pellets (solid line: heterogeneous model; dashed line: pseudo-homogeneous model). 

(b) Temperature profiles of the alumina (T1) and the calcium oxide (T2) packings for a 50%/50% mixture at various simulation 

times.  

5. CONCLUSIONS 

The heat transfer between a hot gas stream and a packed bed formed by two types of refractory 

packings has been investigated. Heterogeneous and pseudo-homogeneous models are presented. 

Convergent, compatible and stable numerical solutions are developed and implemented in MatlabTM. 

The models are validated by comparison with results using the method of lines in the gPROMSTM 

software and used to analyse the heat transfer response of various packed beds with different contents 

of packing type 1 (Al2O3) and type 2 (CaO). The increase of alumina packings in the packed bed 

augments the intra-conduction effects and the time of saturation of the bed. Hence the heterogeneous 

model should be applied to ensure the estimation of the transients and saturation time and is 

recommended for investigations of catalytic packed bed reactors with in-situ adsorption pellets.  
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