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ABSTRACT 

There are several challenges associated with the use of raw measurements for process monitoring, 

maintenance planning and operational and safety studies. One of the main causes is the typical low 

quality of industrial data which are often corrupted by numerous types of errors that can be broadly 

classified in random or systematic. Such errors hinder the quality of the data analysis that can be 

performed on the measurements, the quality of the models that can be developed, and thus the 

conclusions and related actions that can be taken at a plant level. It is therefore paramount to develop 

and implement systematic methods capable of dealing with these varied sources of measurement error. 

The need for these methods are more noticeable in complex, interconnected systems, such as Heat 

Exchanger Networks (HENs), whose performance are of vital importance and multiple measurements 

are taken to monitor such performance. Data Reconciliation (DR) and Gross Error Detection (GED) are 

techniques that complement each other. The former deals with the minimisation of random errors, 

whereas the latter deals with the detection and the mitigation of the effect of systematic errors. DR 

solutions can be improved using Robust Data Reconciliation (RDR), which exploits concepts from 

Robust Statistics to reduce the sensitivity of reconciled solutions with respect to the magnitude of gross 

errors (when present). This work presents the implementation of RDR and GED in a real heat exchanger 

network using plant data and a simplified HEN simulation model. Two different robust estimators and 

heuristic rules for GED are compared using the data with the aim of identifying potentially beneficial 

reconciliation algorithms, for the given context. The extension of this work aims at the integration of 

accurate HEN modelling with the use of RDR and GED as a pre-processing method. 

1. INTRODUCTION 

A reliable analysis of industrial thermal systems for monitoring, optimisation or maintenance, 

greatly depends on the number and quality of measured variables. To account for this dependency, it is 

paramount to ensure the validity and accuracy of any type of collected data. However, there is a limited 

accuracy one can expect, as process data are inevitably corrupted by measurement errors. These errors 

affect data by producing deviations from their true values, affecting further operations via error 

propagation [1]. The sources of measurement errors are generally categorised into two classes: random 

errors, which are caused by arbitrary fluctuations (environment, transmission, etc.); and gross errors, 

which are mainly caused by non-random events that mainly occur systematically (sensor bias or 

malfunctioning, measurement drifts, etc.). Thus, once a proper amount of measurements is set, suitable 

data-treatment methods are needed to mitigate the effect of measurement errors. 

Data reconciliation is a well-known methodology that reduces the effect of random errors by 

adjusting the process measurements to satisfy specific process constraints, such as mass and energy 

conservation laws [1]. In this context, it is important to note that the relevance of accurate process 

models is significant, as these are used to calculate missing measurements and adjust existing ones. 

These estimated values (i.e. reconciled values) can then be used to estimate process KPIs and thus make 



 
 

important operating decisions. Nevertheless, the single use of DR does not always guarantee well-

adjusted solutions, as process measurements could also contain gross errors. To account for their 

presence, a complementary technique known as Gross Error Detection [1] is capable of identifying the 

presence, and (in some cases) the value of systematic errors. A variety of methods are available for this 

task, where the use of statistical tests, integrated with serial or combinatorial approaches, are more 

abundant [2]. Classic data reconciliation (CDR) approaches integrate the use of GED to find reconciled 

measurements; however, when these detections fail, their effect propagates to measurements that do not 

contain gross errors. To avoid this, the use of estimators based on robust statistics, commonly known as 

robust data reconciliation (RDR) is a convenient alternative. These robust estimators are alternative 

functions that replace the weighted-least-square (WLS) estimator that is used in CDR [3]. These 

alternative functions present less sensitivity to gross errors than that of CDR. Nevertheless, when 

persistent gross errors are present (i.e. data drifting or time-persistent biases), the performance of RDR 

is expected to decrease (although not as much as in CDR). To overcome this issue, GED methods for 

RDR are also available [4]. These methods vary from robust statistical tests to heuristic rules based on 

the behaviour of the chosen robust estimator. 

The benefits of RDR and GED are more noticeable in larger, more complex systems, such as HENs, 

where numerous streams and units are interconnected [7]. Relevant process variables such as flow rates, 

temperatures and/or pressures are continuously used by plant-personnel. For example, in monitoring 

activities, fouling resistance is estimated using plant measurements, where measurement errors can 

critically damage the quality of fouling resistance estimations. Moreover, process data are used in the 

training of prediction models, where the more contaminated the data are, the less accurate the prediction 

model will be. Hence, data treatment before these activities provides long-term benefits in many aspects 

of plant management. 

To demonstrate the effects of the approaches above in real-case scenarios, this work presents an 

industrial case study, where the measurements from a crude preheat train are subjected to RDR and 

GED. Based on a comparative analysis of the results, two different robust estimators are selected as 

accurate alternatives. Two heuristic GED criteria, which are suitable for the selected robust estimators, 

are compared in terms of the number of gross errors detected, and their relative context within the data 

set. The use of these techniques show potential benefits for later calculations and decision-making 

processes. 

2. CLASSIC AND ROBUST DR & GED 

A reconciled value should generally comply with two conditions: i) the reconciled value should be 

as close as possible to the measured value (in the absence of gross error) and ii) the reconciled value 

should satisfy the process model [1]. Consequently, an optimisation problem can be formulated so that 

reconciled values satisfy these two conditions. Both CDR and RDR problems are based on optimisation 

approaches, where the main difference lies within the function to minimise. Additionally, in both 

reconciliation problems, the process model, along with specific restrictions such as practical ranges for 

measured values or empirical correlations, are used as constraints in the optimisation problem. More 

contrasts are found when comparing techniques for GED, such as the use of heuristics in RDR. 

2.1 Classic Data Reconciliation 

In this formulation, the objective is to minimise function ρ(ε), which represents the squared of the 

differences between measurements and reconciled values, as a function of the standardised measurement 

error vector ε. These differences are weighted using a covariance matrix (σm), to penalise large 

differences. This method is commonly known as Weighted Least Squares (WLS). The general 

formulation for this CDR problem is given in Equation (1), where xm is the vector of measured values 

and xr represents the vector of reconciled values. Unmeasured variables (when present) are contained in 

the vector xu. The minimisation problem in Equation (1) is subject to a set of equality constraints f , 

which can be of linear or nonlinear nature, and another set of inequality constraints g. Normally, the 



 
 

handling of these two types of constraints depends on the type of solution, namely linear/nonlinear DR 

or steady-state/dynamic DR. 

 
min

𝑥𝑟
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 𝑓(𝑥𝑟, 𝑥𝑢) = 𝑐 (2) 

 𝑔(𝑥𝑟, 𝑥𝑢)  ≥ 0 (3) 

2.2 Robust Data Reconciliation 

RDR replaces the WLS function of CDR in Equation (1) and uses instead functions that belong to 

what are called M-estimators [3]. These estimators have the distinction of being almost insensitive to 

significant increases in the standardised measurement error ε. This means that the effect of gross errors 

in other measurements is alleviated, so better estimates of reconciled values are achieved. Two different 

robust estimators, namely the Welsch and the Correntropy estimators are shown in Equations (4) and 

(5) respectively. Both these estimators have been used in industrial applications in the past, exhibiting 

promising results [5]. 
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Both estimators present a tuning parameter, in this case ρW and ρCO for Welsch and Correntropy 

estimators, respectively. Known values for these parameters are available, such that they can be 

compared based on similarities [5]. In this case, these parameters are tuned so that they perform at 

equivalent accuracy. This criterion deals with how robust each estimator is, and a convenient indicator 

for this robustness is what is called an influence function (IF), which describes the effect of changes in 

measurements on the estimator’s value [3]. For the robust estimators in Equations (4) and (5), the 

influence function is proportional to the first derivative of ρ(ε) with respect to ε. This fact facilitates the 

comparison for different robust estimators. 

2.3 Gross Error Detection 

In this work, only measurement biases are considered. In CDR, these gross errors are found and 

estimated via the deployment of statistical tests together with error models that attempt to capture the 

location and value of gross errors. On the other hand, in RDR, the information provided from the IF can 

be exploited to determine threshold values in the standardised measurement error, below which no gross 

errors are present in the data. These threshold values are called cut points. This method has the advantage 

of not assuming a prior probability distribution for the measurement error [3]. A measurement bias is 

then found when its corresponding adjustment after reconciliation ε is greater than the selected threshold 

value. In this work, the maximum of the influence function, along with the inflection point of such 

function are chosen as cut points, based on previous studies [3]. 

3. RESULTS AND DISCUSSIONS 

The preheat train used in the work by Coletti and Macchietto [6] is further utilised in this case study. 

A simplified diagram is shown in Figure 1. Five years of operation, in daily averaged data of flow rates 

and temperatures around the network, were subject to both RDR and GED. Furthermore, a simplified 

steady-state version of an integrated fouling/heat exchanger network simulation model [7] is used to 

represent the process constraints. A performance indicator is created to assess the data reconciliation, 



 
 

and gross error detection results are assessed by comparing the results from different cut points. The 

selection of the two robust estimators used in this work was carried out previously, where the simulation 

model was utilised to generate synthetic data and assess the performance of RDR and select the best 

estimators (Welsch and Correntropy in this case). 

 

Figure 1: Simplified diagram of preheat train from Coletti and Macchietto [3]. 

The reconciliation performance is assessed by estimating the percentage of variance variation (σ2
var), 

relative to the measured values (e.g. before RDR). The variance of each measured variable was estimated 

and stored before and after RDR (σ2
m and σ2

r respectively). The percentage of variance variation is 

defined in Equation (6). In this Equation, the absolute difference between variances is used, so negative 

values will indicate a variance decrease, whereas positive values would indicate an increase. The 

magnitude of this indicator is also relevant, as relatively large values (greater or less than zero) indicate 

either the presence of a gross error, or an issue with the RDR formulation. 

 
𝜎𝑣𝑎𝑟

2 = 100 (
𝜎𝑟

2 − 𝜎𝑚
2

𝜎𝑚
2 ) (6) 

Table 1: Percentage of variance variation and gross error detection results for Welsch and Correntropy estimators. 

 RDR GED 

Variable Welsch Correntropy Welsch IF 

max. point 

Correntropy IF 

max point 

Welsch IF 

inflection. point 

Correntropy IF 

inflection point 

FC001 1.71 1.712 - - - - 

FC002 4.05 4.05 0 1 0 0 

FC003 -10.25 -10.25 - - - - 

FC004 0 0 - - - - 

FC005 0 0 - - - - 

FC006 0 0 - - - - 

FC007 0 0 - - - - 

TI001 -0.79 -1.31 - - - - 

TI002 -0.49 0.59 2 3 0 0 

TI003 -19.33 -18.23 5 5 4 5 

TI004 2.88 2.94 2 4 0 0 

TI005 2.89 4.70 3 4 0 0 

TI006 -5.97 -5.86 4 5 0 0 

TI007 0.42 0.35 - - - - 

TI008 3.27 3.14 - - - - 

TI009 0.01 0.24 - - - - 

TI010 -7.87 -3.12 - - - - 

TI011 6.36 10.52 0 1 0 0 

TI012 -40.57 -38.01 9 9 6 6 

TI013 -0.49 1.27 7 6 0 0 

TI014 3.07 5.87 0 1 0 0 

TI015 0.64 0.87 3 3 0 0 

TI016 -67.43 -67.50 14 17 2 2 



 
 

The estimation of these variation percentages are shown in the left-hand side of Table 1.Here, the 

Welsch estimator presents the lowest amount of measured variables with increasing variance after RDR, 

with 10 out of the 22 measured values. The Correntropy estimator presents 12 measured variables with 

increasing variance. Variance increases are usually not expected, and they reflect the fact that a 

simplified model, in steady state, has been used as a process model. This can also be seen in the variation 

percentage of sensor TI016, which measures the furnace (or coil) inlet temperature (CIT). This sensor 

presents the highest variance reduction after RDR. The source of this value is the lack of complexity of 

the simulation model when dealing with such measurement, which usually interacts with the complex 

dynamics of the furnace. This illustrates the importance of an accurate process model during RDR. In 

general, the largest variance increase was around 10%, provided by the Correntropy estimator in sensor 

T011. Note that the same sensor provides the maximum variation in the Welsch estimator as well, with 

a value of 6.36%. To the authors’ knowledge, these values represent a typical uncertainty range when 

working with measured data. Another set of measurements presents null variance variation, which 

suggests that said measured values are non-redundant, and the system can only be reconciled when those 

values are not adjusted. 

To further evaluate and compare the reconciliation performance, the trajectories of both measured 

and reconciled values are plotted in Figure 2 and Figure 3 for each robust estimator, and for each of the 

extreme cases discussed above (i.e. sensors T011 and T016), respectively. Note that for confidentiality 

reasons, the values of all measurements have been scaled down. Figure 2(a) and Figure 2(b) show the 

reconciliation of sensor T011 performed by the Welsch and Correntropy estimators respectively, where 

the former seems to implement more consistent adjustments to the reconciled values, with respect to the 

original measurements. In both cases, the trend of reconciled values follows continuously that of the 

measured values, indicating good reconciliation performance, with the exception of those values whose 

variance was increased during reconciliation. Similar results are shown for sensor T016. The reconciled 

values using both robust estimators are depicted in Figure 3(a) and Figure 3(b). Here, the difference 

between reconciled and measured values trend is more noticeable, compared to T011. Also, the 

reconciled values corresponding to those out-of-trend data points are not consistent with each other, not 

satisfying the first condition for being a reconciled value (i.e. reconciled and measured values are not 

close to each other). In both sensors, the Welsch estimator provides a better reconciliation performance 

compared to the Correntropy estimator, given its lower amount of sensors with increased variance and 

its capability of adjusting better to the original data-trend. 

 

(a) 

 

(b) 

Figure 2: Measured and reconciled values for T011 with Welsch (a) and Correntropy (b) estimators 
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(b) 

Figure 3: Measured and reconciled values for T016 with Welsch (a) and Correntropy (b) estimators 

From the GED results in Table 1, for both estimators, the maximum point usage as a cut point detects 

a larger number of gross errors than that of the inflection point value, suggesting than the former is more 

conservative, offering a suitable alternative when no or little knowledge about the nature of the data is 

at hand. There are no major differences in the number of detected gross errors between the two 

estimators . At this point, a convenient method for assessing the differences in the number of gross error 

detected for each estimator is to account for the interaction among process variables, as measurement 

biases or unexpected peaks in the data are usually different from changes in operating conditions, as 

such changes are consistent among interconnected variables. An example is flow rate and temperature 

changes due to changes in working fluid (i.e. changes in density). Overall, the Welsch estimator seem 

to provide more promising results. 

4. CONCLUSIONS 

In this work, the benefits of robust data reconciliation and gross error detection in heat exchanger 

networks have been assessed. Two different robust estimators, along with two more threshold values for 

gross error detection have been tested and compared for choosing the best combination. The results 

show that the use of the Welsch estimator, along with the inflection point value of its influence function 

bring the best reconciliation performance and the most detection of systematic errors. Further extensions 

for this approach include the integration of more detailed heat transfer models and a complementary 

strategy for validating the gross error detection results. 
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