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1. ABSTRACT 

A method is presented for investigating the role of coherent structures in turbulent flows on the time-
average wall heat transfer by using extended proper orthogonal decomposition (EPOD). The data used 
for the analysis is from a direct numerical simulation (DNS) of a pipe flow with a Reynolds number of 
5300 based on bulk velocity. A Fukagata Iwamoto Kasagi (FIK) identity equation is used to relate the 
fluctuating velocity and temperature fields to the time-average Nusselt number (Nu). The results show 
that the temperature-velocity correlations account for up to 65.8% of Nu depending on downstream 
location. By applying the FIK identity on the POD/EPOD modes, which due to homogeneity are Fourier 
modes in the azimuthal direction, it is now possible to compute the individual contribution of the 
coherent structures to the wall heat transfer. By applying the method on the DNS data set, it can be 
shown that the first 15 wavenumbers and 10 POD modes can reconstruct 50% of the wall heat transfer 
using velocity modes while containing only 30% of the turbulent kinetic energy. 

2. INTRODUCTION 

Near wall turbulent coherent structures play an important role in wall heat transfer and have been 
extensively studied in the past with both simulations and experiments. In H. Nakamura et al. [1], the 
temperature was measured on the walls of a turbulent pipe flow and long streamwise structures were 
observed and related to the coherent velocity structures. In Antoranz et al. [2], the fluctuating velocity 
and temperature field were analysed in a cylindrical solar receiver using POD and EPOD and similar 
structures were found inside the pipe. Recently, Mallor et. al. [3], used POD to find coherent structures 
in the wall heat transfer measurements on a flat plate, however, as noted by the authors, only the 
fluctuating part of the heat transfer was analysed, since POD only analyses fluctuating quantities. This 
paper therefore presents a method for connecting the fluctuating quantities to the mean values by 
combining EPOD analysis and the FIK identity. This makes it possible to analyse the contribution of 
individual near wall turbulent coherent structures to the time-average wall heat transfer. 

3. METHODOLOGY 

Due to homogeneity, the fluctuating velocity and temperature fields are first decomposed in the 
azimuthal direction using a Fast Fourier Transform, 𝑞′(𝑟, 𝜃, 𝑧, 𝑡) = ∑ 𝑞ො௠(𝑟, 𝑧, 𝑡)e୧୫ఏ

௠ , where 𝑚 is the 
azimuthal wavenumber. The eigenvalue problem of POD then becomes, L. Sirovich [4]: 

𝑸෡௠
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𝑸෡௠ is a snapshot matrix containing the Fourier transformed variable, 𝑾 is a spatial weight, 𝜦௠ is a 
diagonal matrix containing the eigenvalues, 𝜳௠ is the matrix containing the temporal coefficient and 
𝚽௠ is a matrix containing the spatial modes. The idea behind EPOD is to use the temporal coefficients 
of one variable such as the temperature, 𝜳௠,், to reconstruct another variable such as the velocity field, 

𝚽௠,௏
௘ = 𝑸෡௠,௏𝜳௠,்𝜦௠,்

ିଵ/ଶ , see J. Borée [5] for details. 𝚽௠,௏
௘  is now the spatial velocity EPOD mode 

correlated to the temperature field. In order to relate the fluctuating quantities from the POD and EPOD 
to the total wall transfer on the pipe walls, a FIK identity has been derived by non-dimensionalizing and 
integrating the convection-diffusion equation twice in the radial direction, Kasagi et al [6]: 
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where ⟨ ⟩ indicates the operation ⟨𝑓⟩ = 𝑓 − 2 ∫ 𝑓
௥

଴
𝑟d𝑟, the subscript 𝑏 indicates bulk values, the 

subscript 𝑤 indicates wall values.  

4. RESULTS 

The database used for the analysis is a DNS of a fully developed turbulent pipe flow with a Reynolds 
number of Re୆ = 5300 based on streamwise bulk velocity U୆ and where the temperature is treated as 
a passive scalar with a Prandtl number of 𝑃𝑟 = 1. The grid used for the simulation is unstructured and 
comprises both O- and H-type meshes with a total of 𝑁௖ = 8.6 ∙ 10଺  cells, with Δr୫୧୬

ା = 0.4, Δr୫ୟ୶
ା =

7.16,  RΔθ୫ୟ୶
ା = 11.7, Δzା = 10.6 in wall units. Comparison of the radial profiles of the mean 

velocity, root mean square (RMS) velocity and Reynolds stresses with reference data from literature 
are shown in figure 1 and excellent agreement is found.  
    

                                                          
   Figure 1: Mean velocity (A), RMS values (B) and shear Reynolds stresses (C) are compared to X. Wu. And P. Moin [7]. 

The POD and EPOD analysis is based on 600 snapshots of the flow and temperature field interpolated 
in a structured grid (𝑟, θ, 𝑧) with (𝑁௥ , 𝑁ఏ, 𝑁௭) = (256,128,256) data points, each separated in time with 
Δ𝑡 = 0.95R/U୆. The eigenvalues from the decomposition are plotted in figure 2, and a peak is observed 
for wavenumber m=6 for the temperature and m=4 for the velocity correlated with the temperature.   

                        
Figure 2: Distribution of the eigenvalues of the temperature POD modes normalized with temperature variance (A) and 
distribution of the turbulent kinetic energy of the velocity EPOD modes normalized with total turbulent kinetic energy (B). 
Left vertical axis shows the relative energy of each mode, and right shows the cumulative energy along wavenumbers, where 
(--) is n=1-15, (-.-) is n=1-100 and (-) is n=1-200. Modes n=1-4 are also plotted for individual azimuthal wavenumbers. 

The spatial distribution of mode n=1 with azimuthal wavenumber m=2,4,6 is plotted in figure 3.  It is 
observed that both POD and EPOD modes have a smaller presence near the centre with increasing 
wavenumber. The components of equation 2 are plotted in figure 4A, and at 7.5D, 65.8% of the wall 
heat transfer can be attributed to 𝑁𝑢ிூ  i.e., to temperature-velocity correlations. Note the excellent 
matching between the Nu predicted by DNS and by summing the different components of equation 2. 



 
 

 

In order to quantify the contributions of the POD and EPOD modes to the wall transfer, 𝑁𝑢ிூ௄ଶ is 
calculated for individual modes and is integrated along the streamwise axis  Γ௠,௡ =

∫ 𝑁𝑢ிூ௄ଶ(𝑚, 𝑛)d𝑧
଻.ହ஽

଴
. The wall heat transfer related to each POD and EPOD is plotted in figure 4B.      

      

  
Figure 3: Dual-plane contour plot of the first velocity EPOD mode using 𝑚 = 2 (A), 𝑚 = 4 (B) and 𝑚 = 6 (C), where red 
and blue represent positive and negative values, respectively. 

By applying this method, it can be shown that the POD/EPOD mode pair m=6, n=1 has the largest 
contribution to the wall heat transfer. By combining the first 15 azimuthal wavenumbers and 10 POD 
numbers it is possible to reconstruct 50% of the wall heat transfer, despite the modes only containing 
30% of the turbulent kinetic energy, and by combining m=1-20 and n=1-100, it is possible to reconstruct 
90% of the wall heat transfer using velocity modes containing 57% of the kinetic energy.                

    
Figure 4: Contributions of different components to the Nusselt number using equation 2 (A). Individual contributions of 
wavenumbers, m, and POD numbers, 𝑛, to the wall transfer Γ (B). Left vertical axis shows the wall transfer of each mode, and 
right shows cumulative the wall transfer along wavenumbers, where (--) is n=1-15, (-.-) is n=1-100 and (-) is n=1-200 . Modes 
n=1-4 are also plotted for individual azimuthal wavenumbers. 

To provide further insight, we now analyse the contribution of each mode in relation to its kinetic 
energy; which is plotted in figure 5(A) for single wavenumbers and 5(B) for groups of wavenumbers. 
Intuitively, the larger the energy of a mode, the more it will contribute to the total wall heat transfer, so 
we expect a positive correlation. The steeper the slope, the larger the contribution of a mode for a given 
turbulent kinetic energy or temperature variance. As can be seen from figure 5(A), there is a large spread 
in the slopes of the velocity EPOD modes (solid lines), but the spread is much smaller for the slope of 
temperature modes (dashed lines). Interestingly, while velocity EPOD modes with 𝑚 = 6 may have the 
largest overall contribution to the wall transfer in absolute terms (solid yellow line in Fig. 5(A), modes 
with 𝑚 = 8 have a slightly larger slope and are thus more efficient. Figure 5(B) shows that increasing 
the range of 𝑚 values, the cumulative transfer reaches an asymptotic relation with respect to the kinetic 
energy contained within the EPOD modes. This slope is larger compared to the one relating the transfer 
and the variance of temperature modes.     

 

 

        



 
 

 

                 

Figure 5: Γ/Γ்  plotted against eigenvalues for single wavenumbers (A) and groups of wavenumbers (B). In both figures, 
solid lines represent eigenvalues from velocity EPOD modes, and dashed lines eigenvalues from temperature POD modes. A 
circle corresponds to 𝑛 = 1 − 10, a square to 𝑛 = 1 − 100 and a diamond to 𝑛 = 1 − 200. 

 

5. CONCLUSIONS 

The presented method makes it possible to analyse coherent structures and link these to the time-average 
wall heat transfer, and to find modes that contribute disproportionally to the wall heat transfer compared 
to their turbulent kinetic energy.  
 
Future work will explore the potential of the methodology for gaining insight into more complex 
settings that may include chemical reactions and different flow configurations. This approach can also 
be exploited to actively or passively control the wall heat transfer rate, in the same way that the 
understanding of the effect of different flow structures in the skin friction have recently led to the 
developments of drag reducing actuation strategies that offer net power savings, even in large Re 
numbers. 
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