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ABSTRACT 

Tube-fin heat exchangers (TFHXs) are omnipresent within the air-conditioning and refrigeration 

industry. Computationally expensive, physics-based models and sometimes even simple lumped 

parameters models are conventionally used to conduct performance simulations, optimization, and 

design selection of such devices. But both these approaches have their challenges. In this research, a 

comparative evaluation of machine learning based regression techniques to predict the heat transfer and 

refrigerant pressure drop of TFHXs for different applications is conducted. Ridge Regression (RR), 

Support Vector Regression (SVR) and Artificial Neural Network (ANN) models are trained and 

analysed. Compared to studies from the literature, this research also includes multiple refrigerants, 

applications, and flow path configurations. Results show that the baseline full-domain SVR and ANN 

models predict more than 90% of the test dataset within a 20% error for 5 out of 6 applications. 

Subsequently, the potential of SVR and ANN models to deliver previously exhibited levels of prediction 

accuracy when trained on datasets consisting of fewer samples is examined. As a result, reduced-domain 

ANN and SVR models with training times that are 2 to 3 orders of magnitude lower than baseline models 

with little to no degradation in prediction accuracy are obtained. The trained ML models facilitate rapid 

exploration of the design space significantly reducing engineering time to arrive at near optimal designs.  

1. INTRODUCTION 

Heat exchanger (HX) design optimization and its subsequent integration into heat transfer systems 

is made possible through performance predictions. Reliable physics-based HX models such as Jiang et 

al. [1], are typically utilized to meet this requirement. These models demand detailed information 

pertaining to HX geometry, circuiting, and associated operating conditions. While such models are both 

accurate and precise, they suffer from computational intractability (Huang et al. [2]). To alleviate this 

shortcoming, machine learning (ML) based models have been satisfactorily adopted by several 

researchers – Diaz et al. [3], Wu et al. [4] to approximate HX performance. The ability of these black-

box models to yield accurate predictions with minimal cost of computation at times overshadows their 

inability in explaining the underlying heat transfer phenomena. However, most machine learning models 

in the literature are essentially performance maps, i.e., they predict the performance of a given heat 

exchanger as a function of operating conditions. 

Additionally, to keep up with the heating, ventilation, and air-conditioning industry’s progression 

towards adopting lower-GWP refrigerants, consideration of a variety of refrigerants and a 

comprehensive set of geometry, flow circuitry and operating conditions must be incorporated into the 

ML models. A literature review indicates a lack of such inclusive models. To fill this void, three 

supervised ML algorithms – ridge regression (RR), support vector regression (SVR) and artificial neural 

network (ANN) are implemented to predict the heat load (Q) and refrigerant pressure drop (ΔP) of three 

different HXs. Further investigations are then conducted to check for variation in performance when 

resources available for model development are reduced. This is done to understand the cost associated 

with a model to deliver a certain degree of prediction accuracy. The remainder of this work is organised 

as follows: Section 2 describes the ML model-building methodology; Section 3 presents and discusses 

results pertaining to model performance and prediction behaviour; Conclusions are drawn in section 4.  



 

2. MACHINE LEARNING MODEL-BUILDING METHODOLOGY 

The model-building methodology is comprised of the following steps: Step 1 is the identification of 

the input domain for each HX and is shown in Tables 1 - 3. Step 2 involves sampling the design space 

for training and test datasets. The training dataset is sampled through a combination of full factorial and 

Latin Hypercube sampling (Simpson et al. [5], McKay et al. [6]) while the test dataset is randomly 

sampled within the design space. Step 3 involves generation of performance data corresponding to the 

design points sampled in step 2. This data generated using a finite volume physics-based model [1]. Step 

4 comprises of an exploratory data analysis followed by data pre-processing. These steps are performed 

to investigate possible correlation between the input variables. In Step 5, optimal hyperparameter values 

for each model type are obtained using an iterative k-fold cross validation with k=5. Step-6 involves 

model training. This is followed by model testing where each model predicts Q and ΔP for each HX 

design from the test dataset. Finally, the performance of each model is expressed using the following 

metrics: Relative Mean Absolute Error (RMAE), Maximum Absolute Percentage Error (MAPE), 

percentage of designs predicted within ±20% of true values (β), Standard deviation of absolute errors 

(σerror), Train time and Prediction time. 

Table 1: Radiator input domain 

Application Model Inputs  Units  Range/Category 

Radiator Refrigerant  [-]  Water 

Training data  Tubes per bank  EA  10-100 

points = 167716 Tubes per bank per circuit (i.e., circuitry)  EA  1-4 

Testing data  Tube banks  EA  1-4 

points = 72000 Tube length  [m]  0.25-2 

 Fins per inch  inch-1  11-20 

 Air velocity  ms-1  0.5-3 

 Refrigerant temperature  K  338.15-353.15 

 Refrigerant mass flux  kgm-2s-1  200-800 

Table 2: Condenser input domain 

Application Model Inputs  Units  Range/Category 

Condenser Refrigerant  [-]  R32, R410A, R454B 

Training data  Tubes per bank  EA  10-100 

points = 378511 Tubes per bank per circuit (i.e., circuitry)  EA  1-4 

Testing data  Tube banks  EA  1-4 

points = 142840 Tube length  [m]  0.25-2 

 Fins per inch  inch-1  11-20 

 Air velocity  ms-1  0.5-3 

 Refrigerant dew point temperature  K  313.15-323.15 

 Refrigerant inlet superheat  K  2-30 

 Refrigerant mass flux  kgm-2s-1  300-1200 

3. RESULTS AND DISCUSSIONS 

3.1 Baseline Model Results  

Verification plots for the baseline model predictions on the test dataset for the condenser heat load 

and refrigerant pressure drop are shown in Figs. 1 and 2 respectively. Baseline models are defined as 

those which have been trained using the entire training dataset available. Further displayed in the plots 

are values of the tuned hyperparameters. Since RR models fare poorly, the decision to develop more 

sophisticated ML models to predict HX performance is justified. In the interest of space, baseline results 

pertaining to each HX is communicated in tabular form in tables 4-9. 



 

 

Table 3: Evaporator input domain 

Application Model Inputs  Units  Range/Category 

Evaporator Refrigerant  [-]  R32,410A, R454B 

Training data  Tubes per bank  EA  10-50 

points = 210008 Tubes per bank per circuit (i.e., circuitry)  EA  4-20 

Testing data  Tube banks  EA  1-8 

points = 74870 Tube length  [m]  0.25-2 

 Fins per inch  inch-1  11-20 

 Air velocity  ms-1  0.5-3 

 Refrigerant bubble point temperature  K  278.15-288.15 

 Refrigerant inlet quality  %  10-30 

 Refrigerant mass flux  kgm-2s-1  300-1200 

 

Figure 1: Verification plot for condenser heat load. Left: RR, centre: SVR, right: ANN 

 

Figure 2: Verification plot for condenser pressure drop. Left: RR, centre: SVR, right: ANN 

Table 4: Radiator baseline ML model comparison 

Predicted Parameter  Metric RR  SVR  ANN 

Heat load RMAE [%] 23.4  2.6  4.2 

 MAPE [%] 412.6  22.4  59.1 

 σerror 58.5  15.8  247.8 

 β 52.1  99.9  99.2 

 Training time [s] 1.3  4355  1041 

 Prediction time [s] 0.002  49.6  1.3 

Refrigerant RMAE [%] 18.4  3.7  1.8 

pressure drop MAPE [%] 131.1  27  25.5 

 σerror 1.4  4.1  13.1 



 
 

 

 β 60.3  99.9  99.9 

 Training time [s] 1.1  5604  289 

 Prediction time [s] 0.001  44.4  1.3 

Table 5: Condenser baseline ML model comparison 

Predicted Parameter Metric RR  SVR  ANN 

Heat load RMAE [%] 22.1  3.1  2.7 

 MAPE [%] 336.1  29.3  56.2 

 σerror 18.6  16.2  104.4 

 β 50.2  99.7  99.9 

 Training time [s] 4.5  53571  1812 

 Prediction time [s] 0.005  152  1.6 

Refrigerant  RMAE [%] 19.9  6.4  4.5 

pressure drop MAPE [%] 187.8  58.9  119.4 

 σerror 47.6  154.6  87.7 

 β 55.5  96.6  98.9 

 Training time [s] 2.9  68087  6163 

 Prediction time [s] 0.007  513  1.5 

Table 6: Evaporator baseline ML model comparison 

Predicted Parameter Metric RR  SVR  ANN 

Heat load RMAE [%] 33.4  7.8  6.9 

 MAPE [%] 335.1  159.8  67.4 

 σerror 19.1  23  80.7 

 β 30.8  92.4  94.4 

 Training time [s] 2.1  65898  946.2 

 Prediction time [s] 0.003  174  0.4 

Refrigerant  RMAE [%] 44  11  8 

pressure drop MAPE [%] 980.6  284  124.2 

 σerror 475  726  784 

 β 34.9  83.1  91.4 

 Training time [s] 1.6  29630  2564 

 Prediction time [s] 0.004  137  1.5 

3.2 Physical Verification of ML Models  

The ability of the trained ML baseline models to capture heat transfer and refrigerant ∆P trends as 

physics-based models do is carried out to deem the appropriateness of ML models in not only predicting 

accurately a set of points, but in correctly predicting heat transfer and refrigerant pressure drop trends 

one would expect to observe during HX operation.  

Parametric Analyses 

A sample radiator design as shown within the input domain shown in table 2 is considered. 

Parametric analyses are conducted to investigate the impact of tube length on heat load and refrigerant ∆P 

respectively at different refrigerant mass flux values (G). Figs. 3 and 4 show the variation in heat load 

and refrigerant ∆P as calculated by a physics-based HX model [1] and ML models (SVR and ANN) for 

various tube lengths. While there does exist a clear deviation in prediction it is evident that both ML models 

predict physical trends of heat load and refrigerant ∆P in accordance with the physics-based HX model. 



 

     

Figure 3: Radiator parametric analyses. Left: heat load, right: refrigerant pressure drop 

3.3 Impact of Training Dataset Size 

Shown in Figs. 4 and 5 are the performance trends in terms of prediction accuracy and training time 

of the SVR and ANN for condenser heat load and refrigerant pressure drop as a function of the 

percentage of the overall training dataset size (378511) used for ML model building. This percentage is 

represented by α. The absence of a significant increase in performance with an increase in training 

dataset size across both the models is noticed. Another key point of observation is the drastic increase 

in engineering time for the ML building procedure as the value of α increases. This informs us that for 

the current study, an increase in dataset size is not necessary to achieve better model performance. 

      

Figure 4: Dataset size impact on condenser heat load prediction 

     

Figure 5: Dataset size impact on condenser refrigerant pressure drop prediction 



 

 

4. CONCLUSIONS 

This study develops and compares three machine learning models to approximate HX performance 

as a function of geometry and operating conditions. They were then verified against results from a 

validated finite-volume heat exchanger model [1]. It is found that support vector regression and artificial 

neural network models predict greater than 90% of the test dataset within ± 20% for 5 out of 6 heat 

exchanger application cases. Additionally, the machine learning models developed can predict heat 

exchanger operational trends satisfactorily. Marginal degradation in performance is observed 

accompanied by significant reduction in engineering time for machine learning model building when 

minute proportions of the original dataset size are implemented for model training Compared to 

literature, the models developed here not only include operating conditions but also comprehensive 

geometry and circuiting. For the applications studied, these machine learning models could potentially 

eliminate the need for expensive simulations and even performance maps for screening and optimization 

studies. However, it is recommended that final designs be verified using high-fidelity models.  
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