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ABSTRACT 

Owing to their simple construction, along with their cost-effectiveness and performance, Pulsating 

Heat Pipes (PHPs) have become greatly popular for the cooling of electronics. However, these 

advantages are limited by the conditions under which PHPs are subjected to. Their operation is strongly 

related to the existence of a dominant slug-plug flow throughout the required range of operating 

conditions. Thus, the accurate prediction of flow patterns as a function of operating conditions is of 

paramount importance to the effective design and deployment of these devices. Predictions of PHPs 

performance are typically done with semi-empirical correlations that account for operating conditions 

via dimensionless numbers. However, developing these correlations is a challenging task, as the physical 

phenomena underlying the operation of PHPs are still to be fully elucidated. In contrast, machine 

learning offers a convenient alternative that is model-free and needs limited a priori knowledge of the 

system. This work presents a comparative study of three different machine learning classifiers that are 

trained to predict flow pattern regimes using data from a single-loop PHP that operates with two different 

working fluids and power input levels. Each observation within the data-set is labelled with respect to 

the observed flow pattern for the corresponding observation. The most accurate classifier emerging from 

the comparison is used to build a flow pattern map for the experimental data, where a transition zone 

from slug-plug to annular flow is clearly identify. The results suggest that well-trained machine learning 

algorithms could assist in reducing uncertainty when identifying flow regimes in PHP systems. 

1. INTRODUCTION 

Pulsating Heat Pipes (PHPs) have the potential of playing a pivotal role in reducing cooling costs in 

electronic components, due to their resulting thermal performance compared to other cooling devices 

(e.g. pure cooper) [1]. In addition, no pumping power is required for the circulation of the working fluid, 

as the oscillating effect within PHPs is the responsible for the fluid motion. These feature allow to 

significantly reduce the design complexity of Thermal Control Systems (TCS). When in operation, PHPs 

are filled with fluid and sealed, so the capillary forces produce liquid slugs and vapor plugs that alternate 

between each other [2]. By monitoring the variation of flow direction, pressure drop, and liquid film 

thickness, several flow patterns can be observed [3], showing transitions between slug-plug, semi-

annular and annular flow. For a given geometry, flow patterns are highly influenced by filling ratio and 

power input [4]. In some cases, operating conditions lead to slug-plug transitioning into annular flow 

which, in the long term, reduces the thermal performance. Moreover, it is known that available heat 

transfer correlations are very sensitive to the flow pattern conditions [5]. This is why ensuring at the 

design stage that certain flow patterns perpetuate in PHPs is of great importance. 

To overcome the limitations from first-principle models in PHPs (which are still in development), 

machine learning algorithms provide a compatible solution, as experimental observations can be used 

to train classification models that can predict flow patterns when unseen or new data are available. This 

could be integrated to traditional strategies, when developing semi-empirical correlations for relevant 



 
 

values in heat transfer studies, such as heat transfer coefficients and pressure drops. The capability of 

identifying the flow regime for a set of operating conditions allows for a more accurate estimation of 

design parameters and for useful insights regarding the behaviour of the system during operation. Within 

this context, the use of machine learning is beneficial, as it leverages from the abundance of significant 

sets of data 

This work proposes the use of machine learning classifiers to identify flow patterns and flow pattern 

transition in a single-loop PHP system with two different working fluids and varying gravity conditions, 

using data from the European Space Agency Parabolic Flight Campaigns [6, 7]. The selection of the 

most suitable classifier is carried out by comparing the accuracies of such classifiers when predicting 

the flow regime on unseen data (or testing set). The selected classifier is used for devising flow pattern 

maps for both working fluids, to identify the location of the flow regime transition zone. It is expected 

that this capability provides a more systematic approach when identifying flow regimes, reducing 

observation uncertainty. 

2. METHODOLOGY 

This work was carried out in two stages: first, the experiments were performed, where the data used 

for the machine learning implementation were generated. Second, these data were pre-processed and 

prepared for the deployment of machine learning tests and analyses. Velocity measurements were used 

to estimate acceleration, and the length of bubbles were measured as well. Pressure measurements also 

took place in both thermal terminals of the device (i.e. condenser and evaporator). These measurements 

were used to estimate physical properties such as surface tension, and for the calculation of 

dimensionless numbers such as Reynolds (Re), Weber (We), Froude (Fr) and Bond (Bo) numbers, as 

defined in Pietrasanta et al.[8]. The labelling of flow patterns was done visually while analysing the 

high-speed images. 

2.1 Experimental setup 

The experimental campaign was conducted on a simplified passive heat transfer loop under varying 

gravity levels and power inputs. Ethanol and FC-72 were selected as working fluid, given their 

significant difference in surface tension, density, and latent heat of vaporisation. The main fluid 

properties are listed in Table 1. 

Table 1: Physical properties for Ethanol and FC-72 at 20°C 

Fluid 𝜎 [N/m] 𝜌𝑙 [kg/m3] ℎ𝑙,𝑣 [kJ/kg] 𝜇 [Pa s] 

Ethanol 0.0224 789.59 927.57 1.22·10-3 

FC-72 0.0118 1701.6 94.024 0.72·10-3 

The experimental device is a hybrid pulsating heat pipe. The setup is equipped with wall-side 

thermocouples, a glass tube for high-speed shadowgraph, pressure transducers and a power input that is 

supplied to three heaters coiled around three sections of the evaporator. The temperature at the condenser 

is kept constant with an external cooling loop. A detailed schematics of the equipment is depicted in 

Figure 1. 



 
 

 

Figure 1: Single loop PHP with position of sensors and camera [8]. 

2.2 Classification algorithms 

Classification is defined as a supervised learning algorithm, where a set of relevant features is 

associated to a set of categories (i.e. categorical data), which are already labelled (hence the name 

supervised). This provides a more assertive training stage, and accurate predictions. When doing so, 

different approaches are available, and the specific mechanism for classifying features varies from 

algorithm to algorithm. Thus, choosing the most suitable alternative mainly depends on the type of data, 

and the performance that the algorithm exhibits when classifying unseen features. In order to cover a 

wide range of methods, three different classification algorithms are selected in this work, namely K-

nearest Neighbours (KNN), Random Forest (RF) and Multi-layer Perceptron (MLP). Each of these 

methods present distinct characteristics that make them unique from each other, representing different 

classification mechanisms. The main attributes these algorithms have are summarised in Table 2. 

Table 2: Main characteristic of each selected classification algorithm 

KNN RF MLP 

- Distance-based method. Different 

distance metrics can be deployed 

while implementing 

- Main parameters are the number 

of neighbours to consider and the 

distance metric 

- Normally no training stage is 

needed, classification is done via 

the analysis of each data query 

- Ensemble method. Predictions are 

made based on majority vote of a 

population of decision trees 

- Main parameters are the number of 

trees, number of splits and decision 

criteria 

- The training stage can be improved 

using boosting (re-sampling) to 

randomise data samples 

- Artificial neural network 

(ANN) with feedforward 

structure 

- Performs prediction via 

the minimisation of a cost 

function 

- Main parameters are the 

number of layers, 

activation function and 

learning rate 

The performance of each algorithm is evaluated via the accuracy score, defined in Equation (1), 

where 𝑛 is the number of samples, 𝑦𝑖̂ is the predicted categorical value, 𝑦𝑖 is the true categorical value 

and the function 1(𝑥) is the indicator function, which outputs 1 when 𝑦𝑖̂ = 𝑦𝑖, and 0 otherwise. 

Additionally, learning curves are to be built to assess the effect of training sample size on the training 

and validation performance. 

𝑠𝑐𝑜𝑟𝑒 =  
1

𝑛
∑ 1(𝑦𝑖̂ = 𝑦𝑖)

𝑛−1

𝑖=1

 (1) 



 
 

3. RESULTS 

The entire experimental data set consists of 9841 observations for Ethanol and 8590 for FC-72. For 

both working fluids, the input features are modified versions of Weber, Froude, and Bond numbers, 

represented by 𝑊𝑒𝑙
∗, 𝐹𝑟𝑙

∗ and 𝐵𝑜𝑙
∗ respectively. For more details on these numbers, please refer to the 

work done Pietrasanta et al.[8]. The categorical output data indicate whether a specific observation is 

classified as slug-plug flow or semi-annular flow, and it was done visually using the high-speed imaging. 

To create, train and deploy the classification models for both working fluids, the following steps took 

place: 

i. Data splitting: Data sets are randomly split into training and testing sets. This is done to avoid 

overfitting problems. The proportion of data into the training stage was fixed to 70%. Note that even 

though the KNN algorithm does not need a training stage, this splitting step was done to have a 

consistent comparison among all three classifiers. 

ii. Data scaling: Input features in both the training and testing set were scaled (i.e. normalised) to avoid 

issues coming from different orders of magnitude in the feature values. This is done by estimating 

the expected value and standard deviation of the data sets and applying the normalisation formula 

shown in Equation (2), where 𝑧𝑖 is the normalised data point, 𝑥𝑖 is the original data point, 𝜇 is the 

sample’s mean or expected value, and 𝜎 is the sample’s standard deviation. 

𝑧𝑖 =
𝑥𝑖 − 𝜇

𝜎
 (2) 

iii. Classifier setup: The training set is used to train the classifier and then to test it with the testing set. 

The accuracy score is estimated and stored. At this point, default values for each algorithm’s 

parameters are used. The selection of the most suitable set of parameters for each method is done 

later. 

iv. Cross-validation: The validation step takes place using the training data and the process commonly 

known as cross-validation. In this work, cross-validation is done via the so-called k-fold cross-

validation method. 

v. Accuracy assessment: The accuracy score of both the initial classifier and the one from the cross-

validation are compared to assess the robustness of the initial classifier. 

vi. Selection of hyper-parameters: The most suitable set of  hyper-parameters is selected via grid 

search. This method aims to perform several training and cross-validation across a grid of candidates 

for hyper-parameters. The selected set is the one that outputs the highest cross-validation score. 

Once all the above-mentioned steps are carried out, the testing set is used to assess the prediction of 

all three classifiers for both working fluids. These results are presented in the form of confusion matrices, 

where the proportion of correct predictions for both flow pattern labels and working fluids are reported. 

Table 3 and Table 4 show such results for Ethanol and FC-72 respectively. 

Table 3: Confusion matrix results for Ethanol 

    Actual Slug-plug Actual Semi-annular 

KNN 
Predicted Slug-plug 0.89 0.32 

Predicted Semi-annular 0.11 0.68 

RF 
Predicted Slug-plug 0.88 0.32 

Predicted Semi-annular 0.12 0.68 

MLP 
Predicted Slug-plug 0.90 0.30 

Predicted Semi-annular 0.10 0.70 



 
 

Table 4: Confusion matrix results for FC-72 

    Actual Slug-plug Actual Semi-annular 

KNN 
Predicted Slug-plug 0.90 0.33 

Predicted Semi-annular 0.10 0.67 

RF 
Predicted Slug-plug 0.89 0.34 

Predicted Semi-annular 0.11 0.66 

MLP 
Predicted Slug-plug 0.91 0.33 

Predicted Semi-annular 0.09 0.67 

In general, all algorithms perform similarly, where the classification of slug-plug flow is 

significantly higher than that of semi-annular flow. This could be due to the increase in observation error 

when classifying the semi-annular flow, or to the innate nature of this flow pattern. For both working 

fluids, the MLP classifier shows the best performance, although all three classifiers predict similarly. 

The overall performance in the form of accuracy score for all classifiers on the testing set are 

reported in Table 5 for Ethanol and FC-72 respectively. In accordance with the confusion matrices, the 

results suggest that the use of MLP provides the highest performance. The lowest performance is shown 

by the RF algorithm. 

Table 5: Accuracy score for all classifiers and working fluids 

Classifier Accuracy (%) - Ethanol Accuracy (%) – FC-72 

KNN 82.8 75.8 

RF 82.2 75.6 

ANN 83.9 77.1 

These results are complemented via the use of learning curves. A learning curve shows the 

sensitivity of a particular performance metric (accuracy score in this case.) with respect to the size of 

the training set. This allows to identify whether more data instances are needed and/or a bias/variance 

error dominates the classifier’s performance (i.e. bias-variance trade-off). Figure 2 depicts the learning 

curves for all classifiers and working fluids, showing that the MLP classifier presents the most balanced 

bias-variance trade-off, given by the small gap between training and validation error curves. 

The classification results from the MLP classifier are used to construct a flow pattern map. Based 

on the concepts used in Pietrasanta et al.[8], the x-axis corresponds to 𝐵𝑜𝑙
0.5 and the y-axis with 

𝐹𝑟𝑙
0.5𝑊𝑒𝑙

0.25. In addition, to account for the differences in physical properties between both working 

Figure 2: Training and cross-validation curves: (a) - KNN: Ethanol, (b) - MLP: Ethanol, (c) - Random Forest: Ethanol, (d) - 

KNN: FC-72, (e) - MLP: FC-72, (f) - Random Forest: FC-72 



 
 

fluids, the x-axis values are standarised using the ratio of surface tensions, where that of Ethanol is 

considered as a reference value. Both flow pattern maps are shown in Figure 3 and Figure 4 for Ethanol 

and FC-72 respectively. 

 

Figure 3: Flow pattern map for Ethanol: Multi-layer 

Perceptron 

 

Figure 4: Flow pattern map for FC-72: Multi-layer Perceptron 

The flow pattern maps exhibit consistent transition values in both axes and working fluids. In the 

case of Ethanol, these values are 6 for the x-axis and 2 for the y-axis, whereas for FC-72, 5 for the x-

axis and 1 for the y-axis. This set of values allows for more interpretability, as there is only a margin of 

only ±1 unit at each axis across both working fluids. 

4. CONCLUSIONS 

Three different machine learning algorithms were tested to propose a systematic flow pattern 

classification method for two different working fluids in a PHP system. The output categorical data were 

defined visually and the input features were embedded in dimensionless numbers that represent the 

physical forces involved. All three classifiers showed good performance, where the classification in 

Ethanol data was more accurate than that of FC-72. The use of Multi-layer Perceptron (MLP) exhibited 

the highest performance for both working fluids. These results were used to build flow pattern maps, 

where clear transition zones were identified for both working fluids. Further extensions include the use 

of more diverse data, which will improve the robustness of the classification algorithms. In addition, the 

use of unsupervised learning could provide a significant upgrade, independent from visual classification.  
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