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1. BACKGROUND AND MOTIVATION 

In nature, as well as in a broad range of everyday and industrial applications, droplets occur and 

often consist of more than one component. The fluid dynamics, heat and mass transfer phenomena of 

such mixtures are still not fully understood. The evaporation and spreading dynamics of a binary mixture 

sessile droplet are complex due to the rich interplay of thermal and solutal Marangoni stresses alongside 

the hydrodynamic transport, evaporation, mass diffusion, and capillary stress of the droplet. 

Droplet evaporation is an important area of research for 

applications such as phase change cooling of 

microelectronics [1]. Most coolants are not pure fluids but 

are often made up of mixtures. Therefore, it is important to 

understand more about the fundamentals and phenomena 

that govern such mixtures. We aim to understand more 

about these key heat and mass transfer interactions through 

investigating the stability of a volatile bi-component sessile 

droplet with high wettability (where droplet contact angles 

< 30) comprising ethanol-water deposited onto a heated 

substrate. Previous experimental results on evaporating 

volatile mixtures of ethanol-water show fingering contact 

line instabilities in an “octopi” type arrangement (Figure 1) 

[2]. Large surface tension gradients occur between the apex 

and the contact line of the droplet, and rapid spreading 

occurs due to high ethanol concentration within the drop. 

We identify and investigate these instabilities of a single 

volatile sessile droplet comprising ethanol-water through a 

detailed theoretical model. 

 

2. PROBLEM STATEMENT AND METHOD 

We obtain the transient base state, 𝑎0, using a one-sided model (Figure 2) under the lubrication 

approximation [2] before ‘freezing’ the base state at a small time of 𝑡 = 0.1 and introducing small 

disturbances, 𝑎1, in the azimuthal direction, to perform a quasi-steady-state linear stability analysis, 

𝑎(𝑟,  𝜃,  𝑧,  𝑡) = 𝑎𝑜(𝑟, 𝑧) + 𝜖𝑎1(𝑟, 𝑧)𝑒𝑖𝑘𝜃+𝜔𝑡  (1) 

 

Figure 1: Experimental results for an 

evaporating droplet comprising a 50% 

ethanol and water [2]. Instabilities at the 

contact line are shown. 



 
 

where 𝜔 corresponds to the complex eigenvalue and 𝑘 is the real part of the wavenumber in the 

azimuthal direction, 𝜃, 𝑡 represents time, and 𝜖 is the perturbation amplitude assumed to be 

infinitesimally small. Subscript 0 denotes the instantaneous base state variables and subscript 1 denotes 

the perturbations of these variables. 

 

 

Figure 1: Schematic of droplet flow geometry in cylindrical coordinates where �̂�0 and �̂�0 are the initial height and radius of 

the drop, respectively. The drop is sufficiently thin such that �̂�0 �̂�0⁄ ≪ 1 and it sits on a heated substrate. �̂� and �̂� represent the 

outward unit vectors in the normal and tangential directions from the interface, respectively. A thin precursor film is assumed 

to exist on the solid surface. 

The base state equations are derived assuming an ideal miscible mixture comprising of two volatile, 

miscible liquids A and B. Liquid A is the more volatile component in the bi-component mixture and 

liquid B is the less volatile component. The droplet is considered Newtonian and we assume the liquid 

mixture to be incompressible. The surface tension linearly depends on temperature and concentration. 

The gas phase in our system is considered to be negligible, giving a one-sided model assumption. We 

also make an assumption that the time-scale of evaporation is longer than the time-scale of instabilities 

which enables us to perform quasi-steady instability analysis. The stress singularity at the contact line 

is avoided by including a thin precursor film. 

We assume that the precursor layer comprises of the least volatile component only and that there is 

no phase-change flux in the precursor layer. These assumptions are similar to those used in Williams et 

al (2021) [2]. In order to avoid any artificial diffusion and condensation behaviour occurring in the 

precursor film due to the addition of the second component, a forcing-type penalty function is applied 

to the concentration equation to control the composition of the precursor film. This forces the 

concentration of the more volatile component, 𝑥𝐴, to zero. This assumes that the more volatile 

component evaporates from the precursor film immediately, leaving the film to consist solely of the 

lower volatile component, B. 

Once we obtain a transient base state for an axisymmetric flat droplet deposited over a precursor 

layer under lubrication approximation, the quasi-steady state stability analysis is performed. The 

perturbations are applied to the governing equations and boundary conditions as per equation 1, and 

then this constructs an eigenvalue problem where the stability of the flow is determined from the real 

part of the eigenvalues 𝜔, 

Jv = ωMv (2) 

where J is the Jacobian matrix, M is the mass matrix, 𝜔 is the complex eigenvalues (𝜔 = 𝜔𝑅 + 𝑖𝜔𝐼) and 

v are the corresponding eigenvectors.  

 

 



 
 

     The real part of the eigenvalue, 𝜔𝑅, represents the temporal growth rate of the perturbation which 

gives information about the stability of the flow in our linear system. If all the 𝜔𝑅 eigenvalues are 

negative, the corresponding eigen modes will decay, making the binary system linearly stable. However 

if a growth rate 𝜔𝑅 is positive, this corresponds with growing eigen modes which in turn makes the 

system linearly unstable.  

     The perturbed linear stability equations for the binary system are solved for the unknown system 

variables and their perturbations using the Newton-Raphson method in the same Fortran90 program 

used for the transient base state. The wavenumbers in the azimuthal direction are then evaluated to reveal 

the most dangerous unstable modes, shown in the results section below.  

 

3. RESULTS 

3.1 Pseudo-single component evaporating sessile droplet 

We first consider a pseudo-single component case where all property ratios are set to 1 and the initial 

concentrations of each component are equal. The dispersion curve and eigenvector in the perturbed 

height associated with the most unstable eigenmode are shown in Figure 3. These results agree with 

those predicted by the Williams et al. [2] model for a pure single component droplet. The results indicate 

that the system is linearly unstable, and the disturbances are localised at the droplet contact line. 

 

Figure 3: Plots (a) and (b) depict the dispersion curve showing the real part of the eigenvalues, 𝜔𝑅, for each wave number, 𝑘 

and the resulting eigenvector in the height, ℎ1, at the most unstable mode 𝑘𝑑 = 2 alongside the corresponding base state, ℎ0, 

at the frozen time 𝑡 = 0.1 s for pseudo-single component case. The dispersion plot (a) is compared to Karapetsas model [2] for 

pure single component droplet. ℎ1 is multiplied by an arbitrary scaling factor. 

 

3.2 Bi-component volatile sessile droplet 

We now consider droplets comprising volatile ethanol-water mixture in order to compare with 

previous experiments which focused on these mixtures [2]. Preliminary results in a binary droplet of 

initial ethanol concentration 𝑥𝐴0 = 0.5 and substrate heated at a constant dimensionless temperature are 

shown in Figure 4. These results show that the addition of another component significantly promotes 

the instabilities represented by a substantial increase in the growth rates, given by the real part of the 

eigenvalues, 𝜔𝑅, and the most unstable eigenmode increases from 𝑘𝑑 = 2 to 𝑘𝑑 = 6. 



 
 

  

Figure 4: Plots (a) and (b) show the dispersion curve showing real part of eigenvalues, 𝜔𝑅, for each wave number, 𝑘 and the 

eigenvector in the height, ℎ1, at the most unstable mode 𝑘𝑑 = 6 alongside the corresponding base state, ℎ0, at the frozen time 

𝑡 = 0.1 s for a bicomponent case with initial concentration 𝑥𝐴0 = 0.5. ℎ1 is multiplied by an arbitrary scaling factor. 

The number of active instability modes is much higher for the bi-component case, with all 

perturbation growth rates giving strongly positive values for all wavenumbers, including 𝑘 = 0. This 

shows the addition of another component increases instabilities significantly in comparison to the 

pseudo single component case, and it also suggests our initial quasi steady state assumption may not be 

fully representative of our system here. To validate these results, as well as uncover more information 

on the characteristics of the instability modes, a transient growth linear stability analysis is currently 

being carried out for the volatile binary droplet system. Performing a transient growth stability analysis 

on our bi-component droplet theoretical model will help further understand the development of these 

instability modes. The method for this is outlined in the following section. 

 

3.3 Parameter Analysis 

After conducting an elaborate analysis to understand the effect of physical parameters on the stability 

of evaporating bi-component sessile droplets using our quasi-steady state stability analysis, it was found 

that the surface tension ratio, 𝜎𝑅, and ethanol concentration, 𝑥𝐴0, play a key role in the evaporation 

dynamics and instabilities. For the bi-component case, initial concentrations and surface tension ratios 

were varied between 0.1 ≤ 𝑥𝐴0 ≤ 1 and 1 ≤  𝜎𝑅 ≤ 4, respectively. The most unstable wave number 

and growth rate were mapped onto a 2D plot against concentration and surface tension ratio (Figure 5) 

to show how the instabilities are affected with these parameters. These show that by increasing 

concentration of the more volatile component and/or increasing surface tension ratio, the flow in the 

droplet becomes significantly more unstable linearly with a wider range of unstable modes characterised 

by larger growth rates. 



 
 

 

Figure 5: 2D contour plots showing the most unstable (a) wave numbers, 𝑘𝑑 and (b) eigenvalues, 𝜔𝑑, respectively, for each 

corresponding concentration 𝑥𝐴0 and surface tension ratio 𝜎𝑅 for bi-component ethanol-water mixture. 

 

4. TRANSIENT GROWTH ANALYSIS 

From the results, the quasi-steady state linear stability analysis performed on the volatile binary 

droplet system demonstrates that the addition of a second more volatile component strongly destabilises 

the system. For a bi-component case, there are clearly a much larger number of multiple competing 

active instability modes. The growth rates are significantly higher than the single component case, with 

the base state showing similar growth rates to the instability modes. The larger number of competing 

active modes means our quasi-steady state assumption may not be fully representative of our system. In 

order to uncover more information regarding the characteristics of these modes and achieve a better 

understanding, a transient growth linear stability analysis is currently being developed.  

A transient growth stability analysis will assess the instabilities of the droplet as a time dependent 

problem which will give us more information about the development of these instability modes as well 

as validate the results already obtained from the quasi-steady state analysis. This will let us further 

analyse what truly governs these instabilities.  

Similarly to the quasi-steady state analysis, small disturbances are applied to the base state governing 

equations and boundary conditions in the azimuthal direction 𝜃, 

𝑎(𝑟,  𝜃,  𝑧,  𝑡) = 𝑎𝑜(𝑟, 𝑧, 𝑡) + 𝜖𝑎1(𝑟, 𝑧, 𝑡)𝑒𝑖𝑘𝜃 (3) 

Where a is a general system variable and subscript 0 denotes the base state terms and subscript 1 

denotes the perturbed terms. Similar to the quasi-steady state stability analysis, 𝜖 is assumed to be an 

infinitesimally small perturbation amplitude, and k is the wavenumber where only the real part is 

considered here. Here, 𝑖 is the √−1. 

These perturbed stability equations are then solved alongside the base state equations as a time 

dependent problem in a Fortran90 program to find the growth rates for a range of wavenumbers in order 

to produce similar stability dispersion curves to compare to our original quasi-steady state analysis 

study. 

The following definition from Edmonstone et al [3] is used to evaluate the growth rate, 𝜔𝑖, of a 

perturbation,  

𝜔𝑖 = lim
𝑡→∞

ln 𝒢𝑖(𝑡)

2𝑡
 (4) 



 
 

Where 𝑖 represents the eight unknown variables in the bi-component droplet system; the 

dimensionless height of the droplet interface ℎ, dimensionless total pressure 𝑝, dimensionless flow 

velocities 𝑓 and 𝑔 in the radial and azimuthal directions, respectively, dimensionless temperature 𝛩, 

dimensionless evaporative fluxes of the more and less volatile components 𝐽𝐴 and 𝐽𝐵, respectively and 

the concentration of the more volatile component, 𝑥𝐴.  𝒢𝑖 is the amplification ratio which is defined by 

the energies, 𝐸𝑞(𝑡), relating to each unknown variable, 𝑖, and it’s perturbation. 

𝐸𝑞(𝑡) =

𝐸𝑖1

𝐸𝑖0(𝑡)

(
𝐸𝑖1
𝐸𝑖0

) (𝑡 = 0)
 (5) 

This is further detailed and outlined in Edmonstone et al (2006) [3]. 

This alternative method of assessing the instabilities through transient growth linear stability 

analysis is currently underway, with results expected soon to compare to our dispersion curves 

perturbation eigenvectors results from the original quasi-steady state linear stability analysis. 

 

5. CONCLUSIONS 

We developed a quasi-steady state linear stability analysis for a binary droplet system and the 

instabilities have been investigated. Preliminary results from the stability analysis qualitatively agree 

with the contact line instabilities seen in experiments for evaporating volatile binary droplets comprising 

ethanol-water mixtures. An increased initial concentration of the more volatile component (ethanol) is 

shown to destabilise the droplet system and to increase the solutocapillary forces which enhance 

spreading. This shows that the solutal Marangoni stress is a strong destabiliser in bi-component droplet 

evaporation. Our analysis further shows several competing modes for bi-component drops, therefore we 

are currently developing a transient growth stability analysis to achieve a better understanding of these 

instability modes and characteristics. Once these results are obtained, we can analyse more specifically 

what governs these instabilities. 
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