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1. INTRODUCTION 

Simulating turbulent flows driven by buoyancy is a challenging computational task even assuming 
that the Oberbeck-Boussinesq (OB) approximation is valid and fluid properties are constant. However, 

the OB form of the Navier-Stokes (NS) equations can only provide reliable solutions if the temperature 

differences are quite small [1]. For practical problems of convective heat transfer with large temperature 
differences or using temperature-sensitive fluids, the variation of properties is often outside this range, 

leading to non-Oberbeck-Boussinesq (NOB) convection. In this challenging regime, usual symmetries 

are diminished, and the flow patterns become fluid-dependent [2, 3]. When one tries to model these 
property variations, the simulation cost increases drastically because the emerging Poisson equation for 

pressure has variable coefficients in space and time. To significantly accelerate these simulations, we 

have recently presented [2, 4, 5] an efficient methodology for variable property flows. Using a pressure-

correction and a pressure-splitting scheme, the variable coefficient Poisson equation for the pressure is 
transformed into a constant coefficient equation which allows the application of Fast Direct Solvers 

(FDS). The method can accommodate strong temperature-dependent variations of thermophysical fluid 

properties for all terms of the conservation equations. The computational cost and the low-memory 
footprint of the method is demonstrated by presenting LES and DNS results for a differentially heated 

cavities using liquid metals, executed on CPUs and various low-end single GPU cards. When compared 

against NS-solvers using iterative pressure solvers, the presented method was found to accelerate LES 

and DNS simulations by speedup factors of O(100) for CPU and O(1000) for GPU architectures. 

2. GOVERNING EQUATIONS & NUMERICAL METHOD 

When the flow can be considered as incompressible and the properties of the medium vary with 

temperature, the governing equations take the form: 
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where 𝑢𝑖  represent the velocity components along 𝑥, 𝑦  and 𝑧  directions and 𝑡  is the non-

dimensional time. 𝑃 stands for the non-dimensional pressure and 𝛩 the non-dimensional temperature. 

The scales used to non-dimensionalise these equations are the height ( ℎ ) of the domain as the 

characteristic length scale and 𝑉𝑜 = 𝑎√𝑅𝑎/ℎ as the velocity scale where 𝑎 is the thermal diffusivity. 

Using these scaels, 𝑡𝑜 = ℎ/𝑉𝑜 becomes the time scale and 𝑃𝑜 = 𝜌𝑉𝑜
2 the pressure scale. Temperature is 

made non-dimensional as 𝛩 = (𝛵 − 𝛵𝑟𝑒𝑓)/𝛥𝑇 , where 𝛥𝛵 = 𝛵ℎ − 𝛵𝑐  is the maximum temperature 

difference of the heated (𝛵ℎ)  and cooled (𝛵ℎ)  parts of the problem. 𝛵𝑟𝑒𝑓  denotes the reference 

temperature of the problem, 𝛵𝑟𝑒𝑓 = (𝑇ℎ + 𝑇𝑐)/2. Using these scales, the characteristic dimensionless 

groups emerging are the Rayleigh (𝑔𝛽𝛥𝛵ℎ3𝑣−1𝛼−1), Prandtl (𝑣𝛼−1) and Froude (𝑎√𝑅𝑎 𝑔−1 ℎ−3 ) 
numbers. All thermophysical fluid properties (𝜌, 𝜇, 𝐶𝑝 , 𝑘) are non-dimensionalised using the value of 
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each property at the reference temperature 𝛵𝑟𝑒𝑓 . The specific temperature-dependent property variation 

of any selected fluid can be defined using simple temperature dependent polynomials [2, 4]. 

The numerical method is based on a fractional-step approach and finite differences on Cartesian, 

staggered grids. The Immersed Boundary Method (IMB) is used to describe the presence of solid 

boundaries and FDS solvers are employed to solve the derived Poisson equation. The momentum 
equations are discretised in space with 2nd order central differences. The temperature equation is 

discretised using the Hybrid Linear Parabolic Approximation (HLPA) scheme. Time marches with a 2nd 

order fully explicit Adams–Bashforth scheme or a semi-implicit Crank-Nicolson scheme. In LES mode, 
the turbulent sub-grid scales of motion are modelled by the Smagorinsky or the filtered structure 

function models. 

The efficiency of the proposed method is mainly due to the capability of using robust FDS for 

pressure solution while the fluid properties in equations (1) – (3) are allowed to vary in space and time. 
This is achieved by using a pressure-splitting technique to transform the emerging variable-coefficient 

Poisson equation for pressure into a constant-coefficient equation. A comprehensive presentation of the 

numerical methodology and details on its implementation can be found in [4]. The extension of the 
method to gas flows using the low-Mach approximation can be found in [5]. Part of the method was 

originally developed for interfacial multiphase problems of immiscible fluids [8]. The extension of the 

method to multi-phase convective heat transfer with NOB conditions is under progress. 

3. RESULTS 

The method has been already validated for a wide range of parameters for heated channels, Rayleigh-

Bénard convection [1], thermally driven cavities filled with liquids or gases [4, 5] and mixed convection 

in ventilated cavities [6]. To demonstrate the efficiency and the potential of the developed method, three 

different cases are presented in the following sections: (a) the OB flow in a differentially heated cavity 

(section 3.1), (b) a fully developed turbulent channel flow at 𝑃𝑟 = 0.025, 𝑅𝑒𝜏 = 150  (section 3.2), and 

(c) the flow in a square cavity filled with Ga–In–Sn eutectic alloy (section 3.3). 

3.1 Flow in a differentially heated cavity 

In this section, a subset of results for the turbulent flow inside a square cavity filled with air are 

presented. The differentially heated cavity is square and the gravity field is assumed to act vertically 

downwards. The flow is assumed to be periodic along y-direction and the associated Rayleigh (𝑅𝑎) 

varied in the range 𝑅𝑎 = 109 − 1011. To match the conditions of the DNS study of Sebilleau et al. [7], 

the OB approximation was used for property variations. Various grid sizes were used to simulate this 

case and the simulation cost in terms of physical memory and cpu times for each grid is presented in 
Table 1. Figure 1 shows the comparison for the first and the second order statistics against the reference 

DNS data for 𝑃𝑟 = 0.7 and 𝑅𝑎 = 1011 [7]. 

Table 1: Memory requirements and wall-clock times for various grids executed on CPUs and single-GPU cards. The flow 

simulated was a differentially heated cavity at 𝑅𝑎 = 1011 , 𝑃𝑟 = 0.7 [7]. Execution times include the generation of 1st and 2nd 
order statistics.  

Grid 

Numerical 
Resolution 

RAM  

Total simulation time for 500 time units  

CPU 
2xE2860 

Xeon™ 

GPU 
GTX-

1050Ti 

GPU 
GTX-

2070S 

GPU 
V100 

Nx Ny Nz (GB) (hrs) (hrs) (hrs) (hrs) 

G1 62 32 62 0.01 0.17 0.1 0.05 0.03 

G2 98 48 98 0.1 0.42 0.1 0.05 0.03 

G3 116 64 116 0.1 1 0.3 0.08 0.05 

G4 166 96 166 0.3 6 2.1 0.5 0.34 

G5 194 128 194 0.6 10 3.3 0.8 0.52 
G6 272 128 272 1.1 50 16.7 4.2 2.8 

G7 384 192 384 3.4 167 55.6 15.0 10.1 



 
 

 

 

Figure 1: First and second order statistics from an LES simulation in a differentially heated cavity at 𝑅𝑎 = 1011, 𝑃𝑟 = 0.71 
against the DNS data (dashed lines) of Sebilleau et al. [7]. From bottom to top, each line corresponds to horizontal profiles at 

different vertical locations (𝑧/ℎ) = 0.1, 0.2, 0.3, 0.4 and 0.5. The simulation used ~28  million cells (grid G7 in Table 1).  

3.2 Fully developed channel flow at Pr=0.025 

To examine the simulation cost and the performance of realistic liquid metal flows, a set of 

simulations are presented for the liquid metal turbulent flow in a heated channel. The simulated liquid 

had a 𝑃𝑟 number of 0.025 and the friction Re number was set to 150. The channel had dimensions of 

(5, 3, 2)𝛿  along the streamwise, spawise and vertical directions, respectively. Figure 2 shows the 
comparison for the first and the second order statistics against the reference DNS data of Kasagi & 

Ohtsubo [9] for three different numerical resolutions. 

3.3 Flow in a differentially heated cavity filled with GaInSn 

In this section, a subset of results for the turbulent flow inside a square cavity filled with GaInSn are 

presented. The differentially heated cavity has an aspect ratio 𝛤 = Η/W where H is the height of the 

cavity and W is the distance between the hot and cold plates. The gravity field is assumed to act vertically 

downwards and the flow is assumed to be periodic along y-direction. The associated Rayleigh (𝑅𝑎) 

number varied in the range 𝑅𝑎 = 5x104 − 5x107, according to the DNS and experimental study of 
Zwirner et al. [10]. The flow was simulated using the actual property variations of the liquid eutectic 

alloy GaInSn where 𝑃𝑟 varies in the range 𝑃𝑟 = 0.01 − 0.03 [11]. Various grid sizes were used to 

simulate this case and the predicted values of Nusselt numbers for each case are presented in Table 2.  

Table 2: Flow in a differentially heated cavity filled with GaInSn. Comparison of the predicted Nu numbers against the 

DNS and experimental data of Zwirner et al. [10].  

Case 

 Numerical 

Resolution 

Nu number  

 [10] Present 

𝑅𝑎 Nx Ny Nz 𝑁𝑢𝐻 𝑁𝑢𝐻 

1 5𝑥104 62 32 62 2.76 3.00 

2 5x105 98 48 98 5.05 5.32 

3 5𝑥106 116 64 116 9.05 9.46 

4 5𝑥107 166 96 166 19.82 19.90 
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Figure 2: First and second order statistics from an LES simulation in a heated channel at 𝑅𝑒𝜏 = 150, 𝑃𝑟 = 0.025 against the 

DNS data (dashed lines) of Kasagi & Ohtsubo [9]. The simulation used ~3.7  million cells (256 𝑥 128 𝑥 114).  

 

 

 



 
 

 

Figure 3:Effect of temperature difference ΔΤ on the predicted rms variation of the temperature field for a DHC with Γ=5, 

at  𝑅𝑎 = 4,12𝑥107 . A liquid GaInSn was used as the medium, considering all property variations around a reference 
temperature of 399 oK. These statistics have been collected form 2D LES simulations using a numerical grid of 96x292 cells, 

using (a) 𝛥𝛵 = 10 𝛫, . (a) 𝛥𝛵 = 50 𝛫 and (c) 𝛥𝛵 = 100 𝛫. 

4. CONCLUSIONS 

A numerical method that can significantly accelerate simulation of buoyancy driven flows is 

presented. The efficiency of the method in terms of the computational effort emerges from the utilisation 
of FDS pressure and the low-memory footprint required. For NOB simulations, the present 

implementation of the proposed method requires ~115 MB of physical memory (RAM) per million 

nodes. The overhead with respect to their constant-property OB counterpart simulations was as low as 

~20 – 25%. The method was also found to be compliant with recent advances in GPU architectures and 
was successfully ported to GPUs using the directive-based OpenAcc parallel programming model. Even 

using inexpensive desktop GPU cards, speedup factors of ~10 were reached with respect to CPU 

executions. The cost of each time step was measured as low as ~5 − 10 milliseconds per million nodes, 

using a single gaming GPU card such as GTX-2070S. This translates to simulation speeds that reach 

~7500 − 15000 (time steps/hr) with a numerical grid of 50 million nodes.  
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