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ABSTRACT 

Laminar, steady-state, natural convection of Bingham fluids in trapezoidal enclosures with a heated 

bottom wall, adiabatic top wall and cooled inclined sidewalls has been analysed based on numerical 

simulations for a range of different values of nominal Rayleigh numbers (i.e. 103 ≤ 𝑅𝑎 ≤ 105), 

Bingham numbers (i.e. 0 ≤ 𝐵𝑛 ≤ 0.5), and inclination angles (i.e. 30° ≤ 𝜑 ≤ 60°) for a representative 

nominal Prandtl number (i.e. 𝑃𝑟 = 103). To conduct the parametric investigation, a commercial finite-

volume solver has been used. It has been found that the mean Nusselt number 𝑁𝑢̅̅ ̅̅  increases with 

increasing 𝑅𝑎 due to the strengthening of advective transport. However, an increase in the sidewall 

inclination 𝜑 leads to a decrease in 𝑁𝑢̅̅ ̅̅ . The value of 𝑁𝑢̅̅ ̅̅  was found to decrease with increasing 𝐵𝑛. At 

high values of 𝐵𝑛, fluid flow essentially ceases within the enclosure and the heat transfer takes place 

predominantly due to conduction and, therefore, the value of 𝑁𝑢̅̅ ̅̅  settles to a constant value, for a given 

value of 𝜑, irrespective of the value of nominal 𝑅𝑎. Furthermore, an expression for the mean Nusselt 

number 𝑁𝑢̅̅ ̅̅  in a trapezoidal enclosure with heat bottom wall, cooled inclined sidewalls, and an adiabatic 

top wall accounting for the considered range of Rayleigh numbers 𝑅𝑎, Bingham numbers 𝐵𝑛 and 

inclined wall angles 𝜑 has been identified which provides adequate approximation of the corresponding 

value obtained from the simulation. 

 

1. INTRODUCTION 

A yield stress fluid is a special type of non-Newtonian fluid which acts as a solid below a threshold 

stress (i.e., a yield stress 𝜏𝑦) but flows like a fluid above this critical stress [1]. The use of yield stress 

fluids in industrial applications is wide-ranging with applications in nuclear waste cooling, food and 

chemical processing as well as cryogenic storage. The rheological behaviour of yield stress fluids is 

often modelled by a Bingham model which provides a linear strain rate dependence of the shear stress. 

The analysis of heat transfer in Bingham fluids is, therefore, one of practical interest but also of academic 

interest. The study of Bingham fluids has been considered for square enclosures [2], offering correlations 

for the mean Nusselt number 𝑁𝑢̅̅ ̅̅ . However, relatively limited attention has been directed to the natural 

convection of yield stress fluids in non-rectangular enclosures. The Rayleigh–Bénard convection (i.e., 

heated bottom wall and cooled top wall with adiabatic inclined side walls) within trapezoidal enclosures 

filled with viscoplastic fluid has been analysed by Aghighi et al. [3] across a range of parameters (i.e. 

the angle of inclination of the side walls 𝜑, Rayleigh number 𝑅𝑎 and Prandtl number 𝑃𝑟). However, to 

the best of the authors’ knowledge, the natural convection in Bingham fluids in a trapezoidal enclosure 

with heat bottom wall, cooled inclined sidewalls and an adiabatic top wall is yet to be considered in 

detail. Therefore, the objectives of the current study are, as follows: 

1. To investigate the influence of the geometry of a trapezoidal cavity, Rayleigh number 𝑅𝑎 and 

Bingham number 𝐵𝑛 on the natural convection behaviour in Bingham fluids in a trapezoidal 

enclosure with heat bottom wall, cooled inclined sidewalls, and an adiabatic top wall. 

2. To identify an expression for the mean Nusselt number 𝑁𝑢̅̅ ̅̅  in the considered configuration 

across the range of 𝑅𝑎, 𝐵𝑛 and 𝜑 examined. 
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2. MATHEMATICAL BACKGROUND & NUMERICAL IMPLEMENTATION 

The schematic of the configuration considered in the current analysis is provided in Fig. 1a where 𝐿 

is the length of the bottom heated wall, 𝐻 is the height of the trapezium and 𝜑 is the angle of inclination 

of the sidewall. The heated bottom wall is kept at a temperature 𝑇𝐻 and the two inclined sidewalls are 

kept at a temperature 𝑇𝐶. It is assumed that 𝑇𝐻 > 𝑇𝐶. The top wall is considered to be adiabatic in nature. 

The no-slip condition is applied to all walls. The flow is assumed to be laminar, incompressible, steady, 

and two-dimensional (i.e., the physical flow domain is assumed to be an infinitely long channel and, 

therefore, the third dimension is considered not to affect the flow field). The conservation equations for 

mass, momentum, and energy take the following form for the current study: 

𝜕𝑢𝑖 𝜕𝑥𝑖⁄ = 0                     (1i) 

𝜌𝑢𝑗(𝜕𝑢𝑖 𝜕𝑥𝑗⁄ ) = −(𝜕𝑝 𝜕𝑥𝑖⁄ ) + 𝛿2𝑖𝜌𝑔𝛽(𝑇𝐻 − 𝑇𝐶) + 𝜕𝜏𝑖𝑗 𝜕𝑥𝑗⁄                (1ii) 

𝜌𝑢𝑗𝐶(𝜕𝑇 𝜕𝑥𝑗⁄ ) = 𝑘(𝜕2𝑇 𝜕𝑥𝑗𝜕𝑥𝑗⁄ )                   (1iii) 

where 𝑢𝑖 (𝑥𝑖) is the 𝑖𝑡ℎ component of velocity (spatial coordinate), 𝜌 is the density, 𝑝 is the pressure, 𝑔 

is the acceleration due to gravity, 𝛽 is the thermal expansion coefficient, 𝜏𝑖𝑗 is the stress tensor, 𝐶 is the 

specific heat, 𝑇 is the temperature and 𝑘 is the thermal conductivity. In Eq. 1ii, the Kronecker delta 𝛿2𝑖 

is employed to ensure that the buoyancy effect only occurs in the vertical direction (i.e., 𝑥2 direction). 

The Bingham model for yield stress fluids can be expressed as [2]: 

�̇� = 0      for 𝜏 ≤ 𝜏𝑦                    (2i) 

𝜏 = (𝜇 + 𝜏𝑦 �̇�⁄ )�̇�𝑖𝑗    for 𝜏 > 𝜏𝑦                                (2ii) 

where the components of the strain rate tensor �̇� are given by: �̇�𝑖𝑗 = 𝜕𝑢𝑖 𝜕𝑥𝑗⁄ + 𝜕𝑢𝑗 𝜕𝑥𝑖⁄ .  In Eq. 2, 𝜏 =

[0.5 (𝜏: 𝜏)]
0.5

 and �̇� = [0.5 (�̇�: �̇�)]
0.5

. The stress-shear rate characteristics of a Bingham fluid is 

approximated here by the bi-viscosity regularisation [4]: 

𝜏 = 𝜇𝑦𝑖𝑒𝑙𝑑�̇�     for �̇� ≤ 𝜏𝑦 𝜇𝑦𝑖𝑒𝑙𝑑⁄                      (3i) 

𝜏 = 𝜏𝑦(�̇� �̇�⁄ ) + 𝜇�̇�    for �̇� > 𝜏𝑦 𝜇𝑦𝑖𝑒𝑙𝑑⁄                                (3ii) 

where 𝜇𝑦𝑖𝑒𝑙𝑑 is the yield viscosity and 𝜇 is the plastic viscosity such that the solid material is represented 

by a high viscosity fluid [4]. A value of 𝜇𝑦𝑖𝑒𝑙𝑑 ≥ 1000𝜇 satisfactorily mimics the true Bingham model 

according to its proponents [4], and here 𝜇𝑦𝑖𝑒𝑙𝑑 𝜇⁄ = 104 is chosen to ensure the high-fidelity of the 

computational results. According to Buckingham’s pi theorem, the Nusselt number 𝑁𝑢 (defined as 

𝑁𝑢 = ℎ𝐿 𝑘⁄  where ℎ = 𝑞𝑤 (𝑇𝐻 − 𝑇𝐶)⁄  is the local heat transfer coefficient where 𝑞𝑤 is the wall heat 

flux at the bottom hot wall) can be expressed in this configuration as 𝑁𝑢 = 𝑓(𝑅𝑎, 𝑃𝑟, 𝐻 𝐿, 𝜑, 𝐵𝑛⁄ ) where 

the Bingham number 𝐵𝑛, Rayleigh number 𝑅𝑎, and Prandtl number 𝑃𝑟 are defined as 𝑅𝑎 =

𝜌𝑔𝛽Δ𝑇𝐿3 (𝜇𝛼)⁄ , 𝐵𝑛 = 𝜏𝑦𝐿 (𝜇√𝑔𝛽Δ𝑇𝐿)⁄  and 𝑃𝑟 = 𝐶𝜇 𝑘⁄  where Δ𝑇 = (𝑇𝐻 − 𝑇𝐶), and 𝛼 = 𝑘/𝜌𝐶 is 

the thermal diffusivity. The present analysis considers the aspect ratio 𝐻/𝐿 to be unity (i.e., 𝐻 𝐿⁄ = 1.0). 

A finite-volume (i.e., ANSYS-FLUENT) solver [5] has been used for solving the governing 

equations. A second-order upwind scheme (second-order central difference) has been used for the 

discretisation of convective (diffusive) terms. The coupling of velocity and pressure components is 

achieved using the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm [5], 

where the convergence criteria were set to 10−6 for all relative (scaled) residuals. The boundary 



  

conditions are: 𝑇 = 𝑇𝐻, 𝑢1 = 𝑢2 = 0 at the bottom wall; 𝑇 = 𝑇𝐶 , 𝑢1 = 𝑢2 = 0 at the sidewalls and 

𝜕𝑇 𝜕𝑦⁄ = 0, 𝑢1 = 𝑢2 = 0 at the top wall. The parameters considered in the current study are: 𝑅𝑎 =
103, 104, 105; 0 ≤ 𝐵𝑛 ≤ 0.5; and 𝜑 = 30°, 45°, 60°. The Prandtl number 𝑃𝑟 = 103 was considered for 

all cases. A mesh independence analysis has been completed and a non-uniform unstructured triangular 

mesh of 22500 cells (shown in Fig. 1b) is used for the study. This mesh provides agreement of 𝑁𝑢 on 

the hot wall to within 2% with a mesh of 30625 cells but with a 26% reduction in computational cost, 

giving balance between accuracy and cost for the parametric investigation where 80 simulations were 

considered. Figure 1b also provides the non-dimensional temperature 𝜃 = (𝑇 − 𝑇𝐶)/(𝑇𝐻 − 𝑇𝐶)  field of 

an example case (i.e., 𝑅𝑎 = 103, 𝐵𝑛 = 0.5, 𝜑 = 30°). Furthermore, the currently considered numerical 

implementations have been tested against benchmarks with the natural convection of Newtonian fluids 

in a square enclosure (i.e., 𝜑 = 0°) with differentially heated sides [2] and natural convection heat 

transfer in partially divided trapezoidal cavities [6]. For both benchmark studies, satisfactory agreements 

(i.e., typically within 0.5% but, at most, 2% across all benchmark cases considered) were obtained.  

 

Figure 1: (a) Schematic of considered configuration, and (b) the non-dimensional temperature 𝜃 = (𝑇 − 𝑇𝐶)/(𝑇𝐻 − 𝑇𝐶) field 

for the 𝑅𝑎 = 103, 𝐵𝑛 = 0.5, 𝜑 = 30° case with the mesh superimposed.  

   

Figure 2: The variations of local Nusselt number 𝑁𝑢 on the hot bottom wall with normalised horizontal distance 𝑥1/𝐿 for (a) 

𝑅𝑎 = 103,  𝑅𝑎 = 104 and 𝑅𝑎 = 105 where 𝐵𝑛 = 0.5, 𝑃𝑟 = 103 compared to the corresponding Newtonian fluid for (a) 𝜑 =
30°, (b) 𝜑 = 45° and (c) 𝜑 = 60° configurations. 

 

3. RESULTS & DISCUSSION 

In the following sections, the effects of 𝑅𝑎, 𝐵𝑛, and 𝜑 on the heat transfer behaviour in the 

trapezoidal enclosure are discussed. The variations of the local Nusselt number 𝑁𝑢 on the hot wall with 

normalised horizontal distance 𝑥1/𝐿 for 𝑅𝑎 = 103, 104 and 105 where 𝐵𝑛 = 0.5, 𝑃𝑟 = 103, in 

comparison to the corresponding Newtonian fluid (i.e. 𝐵𝑛 = 0 where the yield stress 𝜏𝑦 = 0), are shown 

for 𝜑 = 30°, 𝜑 = 45°, and 𝜑 = 60° in Figs. 2a-c, respectively. Figures 2a-c show that 𝑁𝑢 increases 

with increasing 𝑅𝑎 for both the Bingham and Newtonian fluids considered. Furthermore, Figs. 2a-c 

show that the values of 𝑁𝑢 are generally greater for the Newtonian fluid than the Bingham fluid across 

𝑥1/𝐿 with the same nominal 𝑅𝑎. This difference is most apparent in 𝑅𝑎 = 105 cases and is due to the 

(a) (b) 

(a) (b) (c) 



  

strengthening of buoyancy effects with increasing 𝑅𝑎 which will have the greatest effect in the 𝐵𝑛 = 0 

cases where there is yield stress 𝜏𝑦 = 0. Figures 3a-f show the contours of non-dimensional temperature 

𝜃 for Bingham fluids of 𝐵𝑛 = 0.5 (i.e., top row) and the corresponding Newtonian fluid (i.e., bottom 

row) for 𝑅𝑎 = 103, 104 and 105 where 𝑃𝑟 = 103 and 𝜑 = 30°. Figures 3d-f show that there are 

significant changes in the behaviour of 𝜃 with increasing 𝑅𝑎 for Newtonian fluids. However, Figs. 3a-

c show that for Bingham fluids the contours of 𝜃 show negligible variation with increasing 𝑅𝑎 for 𝐵𝑛 =
0.5. This suggests that for sufficiently large values of 𝐵𝑛, conduction begins to play the dominant role 

in thermal transport and the nominal Rayleigh number 𝑅𝑎 no longer affects the value of 𝑁𝑢. 

   

   

Figure 3: Contours of non-dimensional temperature 𝜃 for 𝐵𝑛 = 0.5 (i.e., top row) and the corresponding Newtonian fluid (i.e., 

bottom row) for 𝑅𝑎 = 103, 104 and 105 where 𝑃𝑟 = 103 and 𝜑 = 30°. 

 

Figure 4: Variations of the mean Nusselt number 𝑁𝑢̅̅ ̅̅  on the hot bottom wall with Bingham number 𝐵𝑛 for 𝑅𝑎 = 103, 104 and 

105 where 𝑃𝑟 = 103 for (a) 𝜑 = 30°, (b) 𝜑 = 45°, and (c) 𝜑 = 60°.    

The effects of 𝐵𝑛 on the nature of the heat and mass transfer in the trapezoidal cavity can further be 

shown through the variation of the mean Nusselt number 𝑁𝑢̅̅ ̅̅  with 𝐵𝑛 as shown for 𝑅𝑎 = 103, 104 and 

105 where 𝑃𝑟 = 103 for 𝜑 = 30°, 45° and 60° in Figs. 4a-c, respectively. Figures 4a-c show that, for 

a given set of values of 𝑅𝑎 and 𝜑, 𝑁𝑢̅̅ ̅̅  is found to decrease as 𝐵𝑛 increases until 𝑁𝑢̅̅ ̅̅  plateaus to a constant 

value (i.e., at  𝐵𝑛 = 𝐵𝑛𝑚𝑎𝑥) which, for a given 𝜑, is common across all 𝑅𝑎 considered. For larger values 

of 𝐵𝑛, where 𝜏𝑦 is sufficiently large relative to the viscous stress, despite increases in 𝑅𝑎, no significant 

flow is induced within the enclosure and conduction heat transfer plays the dominant role as previously 

discussed. Importantly, however, Figs. 4a-c shows that an increase in 𝑅𝑎 leads to an increase in 𝑁𝑢̅̅ ̅̅  for 

sufficiently low values of 𝐵𝑛 where flow is induced, and convection heat transfer occurs. Moreover, for 

higher values of 𝑅𝑎 where buoyancy forces are greater, the value of 𝐵𝑛 at which 𝑁𝑢̅̅ ̅̅  settles to a constant 

value also increases. The effect of 𝐵𝑛 on the flow behaviour within the enclosure can further be 

examined by considering the non-dimensional vertical velocity 𝑈2 = 𝑢2𝐿/𝛼 at the vertical centreline 

(vertical line of symmetry) as shown for 𝑅𝑎 = 105 where 𝑃𝑟 = 103 for 𝜑 = 30°, in Figs. 5a-c, 

respectively. Figures 5a-c show that 𝑈2 decreases with increasing 𝐵𝑛. This corroborates the observations 

from Figs. 4a-c which indicates that an increase in 𝐵𝑛 suggests strengthening of flow resistance relative 

(a) (b) (c) 

(e) (f) (d) 

(a) (b) (c) 



 

  

to the buoyancy forces and it is reflected in a reduction in the non-dimensional vertical velocity 𝑈2. As 

such, this suggests that a further increase in 𝐵𝑛 will eventually lead to a negligible value of 𝑈2 where 

conduction will become the sole heat transfer mechanism.  

   

Figure 5: Variation of non-dimensional vertical velocity 𝑈2 = 𝑢2𝐿/𝛼  along the vertical centreline for different Bingham 

numbers for 𝑅𝑎 = 105 and 𝑃𝑟 = 103 for (a) 𝜑 = 30°, (a) 𝜑 = 45°, and (c) 𝜑 = 60°. 

The effect of 𝜑 on the heat transfer behaviour can be gleaned by considering the variation of 𝑁𝑢̅̅ ̅̅  

with 𝐵𝑛 for 𝜑 = 30°, 45° and 60°, which is shown in Fig. 6. It is evident from Fig. 6 that an increase 

in the vertical angle 𝜑 leads to a decrease in 𝑁𝑢̅̅ ̅̅  which is due to the walls at temperature 𝑇𝐶 (i.e., cold 

walls, inclined to the vertical) becoming longer leading to greater area for losing heat from the cavity 

and, therefore, a smaller amount of heat flux is needed for higher values of 𝜑 to maintain the same 

temperature difference ∆𝑇 = (𝑇𝐻 − 𝑇𝐶). The observed effects of 𝑅𝑎, 𝐵𝑛 and 𝜑 on the heat transfer 

behaviour must be accounted for when obtaining an expression for 𝑁𝑢̅̅ ̅̅ .  

 

Figure 6: The variation of mean Nusselt number 𝑁𝑢̅̅ ̅̅  for the hot bottom wall with Bingham number 𝐵𝑛 for 𝜑 = 30°, 45° and 

60° where 𝑃𝑟 = 103 for (a) 𝑅𝑎 = 103, (b) 𝑅𝑎 = 104, and (c) 𝑅𝑎 = 105.    

Previous analyses have developed expressions for the mean Nusselt number 𝑁𝑢̅̅ ̅̅  for Bingham fluids 

in different enclosures across a range of 𝑅𝑎, 𝑃𝑟, 𝐵𝑛 and, where appropriate, aspect ratios which have 

extended upon the expressions for Newtonian fluids [2,6,7]. Based on scaling arguments [6,7], an 

expression can be proposed which varies in the region of 0 ≤ 𝐵𝑛 ≤ 𝐵𝑛𝑚𝑎𝑥 accounting for the fall in 

𝑁𝑢̅̅ ̅̅  in this range and takes a constant value for 𝐵𝑛 > 𝐵𝑛𝑚𝑎𝑥. As such, the following expression for 𝑁𝑢̅̅ ̅̅  

can be proposed which extends expression for square enclosures for trapezoidal enclosures: 

𝑁𝑢̅̅ ̅̅ = 1 +
𝐴𝑅𝑎1/2

[
𝐵𝑛

2
+

1

2
√𝐵𝑛2+4(

𝑅𝑎

𝑃𝑟
)

1
2]

[1 − (
𝐵𝑛

𝐵𝑛𝑚𝑎𝑥
)

3/5
]

𝑏

 for 𝐵𝑛 < 𝐵𝑛𝑚𝑎𝑥, and 𝑁𝑢̅̅ ̅̅ = 1 for 𝐵𝑛 ≥ 𝐵𝑛𝑚𝑎𝑥   (4)      

where 𝐴 = 𝑎𝐶𝜑1𝑅𝑎𝑚−0.25[𝑃𝑟𝑛−0.25/(1 + 𝑃𝑟)𝑛] − 1/(𝑅𝑎0.25𝑃𝑟0.25), 𝑏 = 0.025𝑅𝑎0.25𝑃𝑟0.25 with 

𝑎 = 0.178, 𝑚 = 0.269, 𝑛 = 0.02 and 𝐶𝜑1 = 0.5−𝜑[𝑟𝑎𝑑] which causes Eq. 4 to revert back to the 

expression for square enclosures as 𝜑 tends to zero. The expression given in Eq. 4 is dependent upon 

the adequate representation of 𝐵𝑛𝑚𝑎𝑥. An expression for 𝐵𝑛𝑚𝑎𝑥 which extends upon a previous 

(a) (b) (c) 

(a) (b) (c) 



  

expression proposed for square enclosures [2,6] to application in trapezoidal enclosures such that 

𝐵𝑛𝑚𝑎𝑥 = (1 + 𝐶𝜑2)[0.0019𝑙𝑛(𝑅𝑎) − 0.0128]𝑅𝑎0.55𝑃𝑟−0.50 where 𝐶𝜑2 = 4𝜑[𝑟𝑎𝑑]/𝜋[𝑟𝑎𝑑]. This 

expression for 𝐵𝑛𝑚𝑎𝑥 tends back to the expression for square enclosures [2,6] as 𝜑 tends to zero. It is 

evident from Figs. 7a-c that the expression given by Eq. 4 generally provides satisfactory qualitative 

and mostly quantitative variation of 𝑁𝑢̅̅ ̅̅  for the range of 𝑅𝑎, 𝐵𝑛 and 𝜑 considered. 

 

Figure 7: The variation of 𝑁𝑢̅̅ ̅̅  normalised by value at 𝐵𝑛𝑚𝑎𝑥 with 𝐵𝑛 for 𝑅𝑎 = 103, 104 and 105 where 𝑃𝑟 = 103 for (a) 

𝜑 = 30°, (b) 𝜑 = 45°, and (c) 𝜑 = 60° along with the values from Eq. 4.    

 

4. CONCLUSIONS 

Laminar, steady-state, natural convection of Bingham fluids in trapezoidal enclosures with a heated 

bottom wall, adiabatic top and cooled inclined sidewalls has been analysed based on numerical 

simulations for a range of different values of 𝑅𝑎 (i.e., 103 ≤ 𝑅𝑎 ≤ 105), 𝐵𝑛 (i.e., 0.0 ≤ 𝐵𝑛 ≤ 0.5), and 

𝜑 (i.e., 30° ≤ 𝜑 ≤ 60°. It has been found that 𝑁𝑢̅̅ ̅̅  increases with increasing 𝑅𝑎 due to the strengthening 

of advective transport. However, an increase in the sidewall inclination 𝜑 leads to a decrease in 𝑁𝑢̅̅ ̅̅ . The 

value of 𝑁𝑢̅̅ ̅̅  was found to decrease with increasing 𝐵𝑛 value. At high values of 𝐵𝑛, the fluid flow 

becomes negligible within the enclosure and heat transfer begins to take place due to thermal conduction 

and, therefore, the value of 𝑁𝑢̅̅ ̅̅  settles to a constant value irrespective of the value of 𝑅𝑎. Furthermore, 

a correlation for 𝑁𝑢̅̅ ̅̅  for the considered configuration accounting for the range of 𝑅𝑎,  𝐵𝑛 and 𝜑 has 

been proposed which provides satisfactory predictions of the qualitative variation of 𝑁𝑢̅̅ ̅̅ . 
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