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1. INTRODUCTION 

Natural convection loops appear in numerous passive heat exchange systems, one example being the 

safety systems in nuclear reactors cooling. The fluid flow is driven by thermal gradients between hot 

and cold regions and exhibits complex dynamical behaviour when these gradients are increased. In this 

study we report on the numerical simulation results for the onset of  unsteady flow in natural convection 

loops. Our preliminary findings suggest that the mechanisms of transition to unsteady flow in loops are 

more complex than those observed in rectangular cavities. 

2. MATHEMATICAL MODEL AND DISCRETISATION 

The natural convection flows are modelled by the Boussinesq approximation of the Navier-Stokes 

equations (see Elman et al. [1, Chapter 11]). We adopt the non-dimensionalisation suggested in Christon 

et al. [2], with the characteristic length scale 𝐿∗, velocity scale 𝑈∗ = √𝑔𝛽𝐿∗Δ𝑇, time scale 𝜏∗ =
𝐿∗

𝑈∗
, and 

pressure 𝑃∗ = 𝜌𝑈∗
2, where Δ𝑇 = 𝑇ℎ − 𝑇𝑐 is the temperature difference between hot and cold sections, 𝑔 

the gravity constant, and 𝛽 the fluid volume expansion coefficient. Then, the Boussinesq system for the 

unknown fluid velocity 𝒖, pressure 𝑝, and temperature 𝑇 reads: 

𝜕𝒖

𝜕𝑡
− 𝜖𝑢Δ𝒖 + 𝒖 ⋅ ∇𝒖 + ∇𝑝 = 𝒈𝑇    in 𝑊 = Ω × [0, 𝜏]                                   (1) 

∇ ⋅ 𝒖 = 0          in Ω                                                            (2) 

𝜕𝑇

𝜕𝑡
− 𝜖𝑇Δ𝑇 + 𝒖 ⋅ ∇𝑇 = 0          in 𝑊                                                          (3) 

The viscosity parameters 𝜖𝑢 and 𝜖𝑇 are expressed in terms of the Rayleigh number 𝑅𝑎 and the Prandtl 

number 𝑃𝑟 as 𝜖𝑢 = √
𝑃𝑟

𝑅𝑎
  and 𝜖𝑇 =

1

√𝑃𝑟⋅𝑅𝑎 
, where 𝑅𝑎 =

𝑔𝛽Δ𝑇𝐿3

𝜇𝛼
, 𝑃𝑟 =

𝜇

𝛼
 (𝜇 is the molecular diffusivity 

and 𝛼  the thermal diffusion coefficient). The system (1)-(3) is augmented with a set of standard 

boundary conditions, i.e., the no-slip velocities on all walls 

𝒖 = 𝟎        on 𝜕Ω × [0, 𝜏]                                                           (4) 

and adiabatic temperature conditions on all walls (𝜕Ω𝑁
𝑇 ) 

𝜖𝑇∇𝑇 ⋅ �̂� = 0      on 𝜕Ω𝑁
𝑇 × [0, 𝜏]                                                      (5) 

except on the walls of the hot (the subscript ℎ) and the cold section (the subscript 𝑐) (collectively denoted 

by 𝜕Ω𝐷
𝑇 ), where inhomogeneous Dirichlet boundary conditions are imposed: 

𝑇ℎ =
1

2
(1 − 𝑒−𝛾𝑡),          𝑇𝑐 = −

1

2
(1 − 𝑒−𝛾𝑡)                                            (6) 
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In (5)  �̂� denotes the outward pointing unit normal vector at every point of the boundary 𝜕Ω𝑁
𝑇 . The 

exponential term in (6) ensures gradual heating and cooling of the hot and the cold walls respectively. 

This scenario is closer to the physical reality than the impulse start, and avoids any spurious oscillations 

in the numerical solution. 

The time discrerisation deployed in this context is trapezoid rule, which has asymptotic second-order 

accuracy. The time interval of interest [0, 𝜏] is divided into 𝑁𝜏 subintervals of variable size. After time 

discretisation the semi-discrete problem (1)-(3) reads: given the approximations (𝒖[𝑛], 𝑝[𝑛], 𝑇[𝑛]) at time  

𝑡𝑛, 𝑛 = 0,1, … 𝑁𝜏 and the boundary data 𝑇ℎ
[𝑛+1]

and 𝑇𝑐
[𝑛+1]

, compute (𝒖[𝑛+1], 𝑝[𝑛+1], 𝑇[𝑛+1]) via 

2

Δ𝑡𝑛+1
𝒖[𝑛+1] − 𝜖𝑢Δ𝒖[𝑛+1] + 𝒖[𝑛++] ⋅ ∇𝒖[𝑛+1] + ∇𝑝[𝑛+1] − 𝒈𝑇[𝑛+1] =

2

Δ𝑡𝑛
𝒖[𝑛] +

𝜕𝒖[𝑛]

𝜕𝑡
    in Ω      (7) 

−∇ ⋅ 𝒖[𝑛+1] = 0      in Ω                                (8) 

2

Δ𝑡𝑛+1
𝑇[𝑛+1] − 𝜖𝑇Δ𝑇[𝑛+1] + 𝒖[𝑛+1] ⋅ ∇𝑇[𝑛+1] =

2

Δ𝑡𝑛
𝑇[𝑛] +

𝜕𝑇[𝑛]

𝜕𝑡
  in Ω      (9) 

In (7)-(9) Δ𝑡𝑛+1 = 𝑡𝑛+1 − 𝑡𝑛 is the current step, 
𝜕𝑢[𝑛]

𝜕𝑡
= 𝜖𝑢Δ𝒖[𝑛] − 𝒖[𝑛] ⋅ ∇𝒖[𝑛] − ∇𝑝[𝑛] + 𝒈𝑇[𝑛] is the 

fluid acceleration at 𝑡𝑛, and 
𝜕𝑇[𝑛]

𝜕𝑡
= 𝜖𝑇Δ𝑇[𝑛] − 𝒖[𝑛] ⋅ ∇𝑇[𝑛] is the rate of change in temperature at 𝑡𝑛. 

The standard trapezoid rule is stabilised using time averaging technique [6], which is applied 

periodically. This circumvents the problem of locking the time step size in adaptive setting, which is 

caused by the lack of damping in the standard algorithm. We use adaptive time steps in the simulation, 

with the step size selection done via a predictor-corrector scheme, using the AB2 method as a predictor 

[7]. 

The semi-discrete problem (7)-(9) is non-linear and a numerical scheme for its linearization is required. 

Standard approaches used in this context are Picard's or Newton's linearization. These techniques can 

achieve arbitrary level accuracy, but are computationally expensive, requiring multiple solutions of 

large, sparse linear systems at every time step. An alternative approach is to extrapolate 𝒖[𝑛+1] using 

the second-order accurate approximation  

𝒖[𝑛+1] ≈ (1 +
Δ𝑡𝑛+1

Δ𝑡𝑛
) 𝒖[𝑛] −

Δ𝑡𝑛+1

Δ𝑡𝑛
 𝒖[𝑛−1]                                      (10) 

In this way the resulting numerical scheme retains its asymptotic order of accuracy, while being much 

simpler and computationally cheaper, requiring only the solution of a single linear system per time step. 

Notice, however, that for tight tolerances the numerical schemes based on Picard’s and Newton’s 

linearization are more accurate in absolute terms. 

Finally, the semi-discrete problem (7)-(9) with the linearization (10) is discretised in space using a 

method of lines based on finite element approximation over a fixed grid of quadrilateral elements. We 

use the inf-sup stable Taylor-Hood method (Q2-Q1), with the continuous biquadratic approximation for 

the velocity components and the continuous bilinear approximation for pressure. The temperature is 

discretised by biquadratic approximation (Q2), which is the approach suggested in the literature [8]. 

The sparse linear systems that arise in this context can be solved either by a direct sparse solver, or by a 

Krylov iterative method. A tailor-made block preconditioner for the latter case is developed in [3]. In 

this work we solve the systems using a direct method. The implementation of the described method is 

done in MATLAB as part of the IFISS finite element library [4]. 



 

3. NUMERICAL RESULTS 

We consider the same loop geometry that was studied by Wilson et al. in [5] (see Fig. 1). The length 

and the height of the straight segments in the loop are equal to 6, and the channel diameter is 1. The 

inner radius of straight-angled bends is equal to 1.5. The hot segment (depicted in red) of length 3.5 is 

placed symmetrically at the bottom straight segment, and the cold segment (depicted in blue) of the 

same length occupies the top of the right vertical segment. 

 

   

 

Figure 1: The loop domain geometry with the parameters and a sample finite element grid. The hot 

segment is depicted in red and the cold segment in blue. 

We simulate the flow of air (𝑃𝑟 = 0.71) and consider a range of 𝑅𝑎 between 100,000 and 300,000. The 

simulation is performed over a long interval ( 𝜏 = 1000 ), thus ensuring that the initial transient 

behaviour is damped, and that we can study the system’s asymptotic behaviour.  

3.1 Convergence tests 

We study the consistency and accuracy of the results across two different finite element grids. In this 

experiment we consider two values of 𝑅𝑎 (100,000 and 150,000). The coarse grid has 122,430 degrees 

of freedom, and the fine grid 316,200 degrees of freedom. There are 35 elements across the channel in 

the coarse grid and 40 elements in the fine grid. In the case 𝑅𝑎 = 100,000 the solution is steady, while 

for 𝑅𝑎 = 150,000 we observe small pulsating variations (see Fig. 2.a) In both cases we compare the 

average values of the velocity components 𝑢𝑥  and 𝑢𝑦,  and temperature 𝑇 . In addition, for 𝑅𝑎 =

150,000 the magnitude of oscillations in these quantities is reported. The results are summarised in 

Table 1 for 𝑅𝑎 = 100,000 and in Table 2 for 𝑅𝑎 = 150,000. 

The results look consistent in both cases, with only minor differences which are of order 10−4. In the 

remaining simulations we use only the fine grid with 316,200 degrees of freedom. Further validation of 



these results should involve the comparisons with a numerical scheme in which the solution of the non-

linear problem done by Picard’s or Newton's iteration. 

Table 1: The steady-state values of the velocity components 𝑢𝑥 and 𝑢𝑦, and temperature 𝑇 for      

𝑅𝑎 = 100,000 and two different discrete problem sizes 𝑛. 

𝑛 𝑢𝑥 𝑢𝑦 𝑇 

122,430 −0.7870 0.0013 −0.1109 

316,200 −0.7868 0.0013 −0.1110 

  

Table 2: The average values and the magnitudes of oscillations of the velocity components 𝑢𝑥  and 

𝑢𝑦, and temperature  𝑇 for 𝑅𝑎 = 150,000 and two discrete problem sizes 𝑛. 

𝑛 𝑢𝑥̅̅ ̅ Δ𝑢𝑥 𝑢𝑦̅̅ ̅ Δ𝑢𝑦 �̅� Δ𝑇 

122,430 −0.7241 0.0006 0.0004 0.0009 −0.0988 0.0002 

316,200 −0.7239 0.0006 0.0004 0.0009 −0.0989 0.0002 

 

3.2 The onset of the time-dependent flow 

We perform a set of simulations for four different values of 𝑅𝑎. The time step sizes selected by the 

adaptive integrator vary in the asymptotic regime between 0.4 for 𝑅𝑎 = 150,000 and 0.09 for 𝑅𝑎 =

300,000 (the integration over the interval [0,1000] took 4223 steps in the former and 12591 steps in 

the latter case). 

The flow appears laminar for 𝑅𝑎 = 100,000, but for larger values we observed a transition to a non-

steady regime. In laterally heated rectangular cavities the transition to a non-steady flow is via a simple 

Hopf  bifurcation, with a pair of complex eigenvalues crossing from the left (stable) to the right 

(unstable) half of the complex  plane at the critical value of  𝑅𝑎. This results in a simply-periodic 

oscillatory flow [2]. By contrast, the transition to unsteady flow in convective loops exhibits a more 

complex pattern. In Fig. 2 we present the traces of the horisontal velocity 𝑢𝑥 at the point (0, −5), which 

lies in the centre of the hot section, and in Fig. 3 the traces of temperature for 𝑅𝑎 = 250,000 and 𝑅𝑎 =

300,000. The traces exhibit periodic behaviour, but their shape suggests the presence of multiple 

harmonics in the signal. We perform the Fourier analysis of the computed signals in MATLAB. For the 

two lower values of 𝑅𝑎 (150,000 and 200,000) the Fourier spectrum is broad, without clear peaks, while 

in the cases 𝑅𝑎 = 250,000 and 300,000 we detect 2-3 sharp peaks in the spectrum, indicating a small 

number of unstable complex eigenvalues. These preliminary findings warrant a more detailed study and 

verification by more accurate numerical techniques, including the turbulence models [5]. 

Finally, in Fig. 4 we plot the isotherms in the bottom horisontal section of the loop at time 𝑡 = 975 for 

𝑅𝑎 = 300,000.  This time instance corresponds to the local temperature peak at the control point 

(0, −5). The figure depicts a complex, non-symmetric temperature distribution. 

 

 

 



(a)                                                                           (b) 

                                       (c)                                                                                    (d) 
 

Figure 2: Velocity component 𝑢𝑥 traces at the middle point of the hot area (0, −5): 

(a) 𝑅𝑎 = 150,000, (b) 𝑅𝑎 = 200,000, (c) 𝑅𝑎 = 250,000, (d) 𝑅𝑎 = 300,000. 



                                               (a)                                                                                              (b) 

Figure 3: Temperature traces at the middle point of the hot area (0, −5):  

(a) 𝑅𝑎 = 250,000 , (b) 𝑅𝑎 = 300,000. 

Figure 4: The isotherms in the bottom straight segment of the cavity at 𝑡 = 975 for 𝑅𝑎 = 300,000. 
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