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1. INTRODUCTION 

Periodic open cellular structures (POCS) are innovative structured internals for heat transfer 

applications. They are of special interest as tailor-made components for apparatuses in compact cooling 

and heating systems due to their continuous fluid and solid phases as well as their large design freedom. 

In order to evaluate the potential of POCS and to enable an application-oriented design, a detailed 

knowledge of the relation between their geometry and heat transfer capability is necessary. This 

contribution focuses on the investigation of the convective heat transfer in POCS with cubic unit cells 

during unsteady laminar flow. Numerical simulations have been carried out with varying dimensionless 

longitudinal and transversal pitches (𝑠L = 𝑠T = 3; 4; 5) as well as Reynolds numbers (𝑅𝑒 = 10 − 100) 

identifying the transition from the steady to the unsteady laminar flow regime. Based on a superposition 

approach (see Figure 1), a physically founded model for the prediction of the heat transfer coefficient is 

developed. The results calculated by the model show an excellent agreement with the simulation data. 

 

Figure 1: Scheme of the superposition approach and definition of longitudinal as well as transversal pitches. 

2. NUMERICAL APPROACH 

The numerical simulations were performed using the open source software OpenFOAM [1] 

(version 6), which discretizes the governing equations (conservation of mass, momentum and energy) 

with the finite volume method. During this work, the buoyantBoussinesqPimpleFoam solver was used 

in combination with the PISO algorithm and second order discretization schemes to calculate the 

unsteady incompressible flow fields in the porous structures. Buoyancy effects were neglected. 

Turbulence models were not needed due to the laminar flow regimes investigated. The working fluid 

was water with constant physical properties at 32 °C (see Table 1).  

Table 1: Properties of water at 32 °C [2]. 

Properties Values 

Density 𝜌F /  
kg

m³
  995 

Kinematic viscosity 𝜈F /  
m²

s
  7.68 ∙ 10−7 

Specific heat capacity 𝑐𝑝,F /  
J

kg∙K
  4180 

Thermal conductivity 𝑘F /  
W

m∙K
  0.617 

Prandtl number 𝑃𝑟F / −  5.18 
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To minimize the computational effort, the periodicity of the investigated structures was exploited. 

By implementing periodic boundary conditions based on the suggestions of Beale and Spalding [3], a 

simulation volume of two unit cells along each spatial direction was sufficient to obtain 

hydrodynamically and thermally developed flow fields. The size of the simulation volume can be 

considered representative of much larger structures, as preliminary studies have shown that increasing 

the volume does not alter the results. To estimate the discretization errors of the setup and the numerical 

grids, the so-called grid convergence index 𝐺𝐶𝐼 was used as proposed by Roache [4]. The spatial and 

temporal resolutions resulted in 𝐺𝐶𝐼 values below 2.1% and 0.05%, which was deemed as sufficiently 

low. Validation has been done by comparing the simulation results with data from literature, as shown 

in section 3. 

3. RESULTS AND DISCUSSION 

3.1 Boundaries of the unsteady laminar flow regime 

Despite numerous publications investigating flow regimes in porous media, no comprehensive 

methodology exists to predict the regime boundaries [5]. Depending on the geometry of the porous 

medium, the transition from one regime to the other may occur at strongly varying Reynolds numbers. 

Therefore, the regime boundaries between the steady laminar and unsteady laminar as well as the 

beginning of the transitional regime have been identified for the cubic POCS investigated in this work. 

The onset of periodic vortices marked the end of the steady flow regime, whereas a strong broadening 

of the frequency spectrum corresponding to the evolution of chaotic wakes set the beginning of the 

transitional regime and the end of the unsteady laminar regime. The Reynolds number 𝑅𝑒 used in this 

work is defined according to Eq. (1) with 𝑑 denoting the strut diameter, 𝑢0 the superficial velocity, 𝜓 

the porosity of the structure and 𝜈F the kinematic viscosity of the fluid: 

 
𝑅𝑒 =

𝑢0 ∙ 𝐿c

𝜓 ∙ 𝜈F
 with 𝐿c =

𝜋∙𝑑

2
 (1) 

First, the beginning of the unsteady flow regime in in-line struts were compared with results from 

literature to check the numerical setup. Afterwards, the flow regime boundaries of cubic cells have been 

analysed. The results of both investigations are shown in Figure 2.                     
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Figure 2: Reynolds numbers of in-line struts (left) and cubic cells (right) marking the transition between two flow regimes as 

a function of the dimensionless longitudinal pitch. The error bars indicate the respective upper and lower bounds of the 

corresponding flow regime transition. Additionally, data from Khalifa et al. is shown [5].  

The simulation results agree well with the data provided by Khalifa et al. [5] supporting the validity 

of the setup. Both data sets indicate that a reduction of the dimensionless pitch postpones the onset of 



 
 

the unsteady flow regime to higher Reynolds numbers. This is to be expected since a reduction of the 

free flow area increases the influence of viscous forces and thus stabilises the flow. The same 

explanation applies to the transition between steady to unsteady flow in cubic cells. They exhibit a 

similar curve progression to the in-line struts but the absolute Reynolds values are larger because of 

additional struts causing stabilisation of the flow. The beginning of the transitional regime also shifts to 

larger Reynolds numbers as the dimensionless pitch decreases. However, the curve progression is altered 

causing different sizes of the unsteady laminar flow regime for each cubic cell.  

3.2 Analysis of the convective heat transfer 

The results for the convective heat transfer are presented in terms of a time averaged non-

dimensional Nusselt number 𝑁𝑢 with ℎ representing the heat transfer coefficient: 

 
𝑁𝑢 =

ℎ ∙ 𝐿c

𝑘F
 with 𝐿c =

𝜋∙𝑑

2
 (2) 

The Nusselt number was determined for all cubic cells in a Reynolds range between 𝑅𝑒 = 10 −
100, except when the transitional flow regime was reached. The results are presented in Figure 3.  
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Figure 3: Nusselt numbers as a function of the Reynolds number for cubic cells with varying non-dimensional longitudinal 

and transversal pitches. 

Two distinct curve progressions are observed: Sections with nearly constant Nusselt numbers and 

sections with positive slopes. In the first case, the flow fields of all structures remain steady and resemble 

flows through channels. Accordingly, the constant Nusselt numbers can be attributed to the steady state 

regime with undisturbed and fully developed thermal boundary layers [6; 7]. The latter sections coincide 

with the unsteady laminar flow regime. Vortices cause mixing of the flow and force a reformation of 

the thermal boundary layers leading to a change in the slope of the curve [6; 7]. Although the onset of 

vortex generation occurs at a defined Reynolds number, the resulting Nusselt number exhibits a gradual 

transition from the steady state to the unsteady flow regime. Apparently, the mixing capability of the 

vortices is initially not sufficient to cause a complete homogenisation of the temperature field in the 

fluid. However, as the Reynolds number increases, the temperature field approaches a homogenised 

state causing a full reformation of the thermal boundary layers.  

For a first appraisal of the superposition approach (see Figure 1), the results obtained from cubic 

cells are compared to their corresponding in-line and inclined strut arrangements. Exemplarily, the 

Nusselt numbers of all three geometries with non-dimensional pitches of 𝑠L = 𝑠T = 3 are shown in 

Figure 4 as a function of the Reynolds number. A correlation for in-line struts developed by 

Gnielinski [8] is added to validate the results of the unsteady simulation cases (see Eq. (5)-(7)). As 



 
 

shown in Figure 4, the in-line strut data fits the correlation fairly well in the fully developed unsteady 

flow regime with deviations of less than 20%. 
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Figure 4: Nusselt numbers as a function of the Reynolds number for in-line struts, inclined struts and cubic cells with a non-

dimensional longitudinal and transversal pitch of 𝑠L = 𝑠T = 3. Additionally, a correlation for in-line struts developed by 

Gnielinski [8] is shown.   

The curve progression of the in-line struts resembles strongly that of the cubic cell. It has two distinct 

sections corresponding to the steady state and unsteady laminar flow regimes. However, the in-line struts 

show larger Nusselt numbers than the cubic cell over the entire investigated Reynolds range. This can 

be attributed to two effects. Near the junction of two struts in the cubic cell, the fluid flow stagnates 

reducing the local fluid velocity as well as the local heat transfer. Additionally, the contribution of the 

inclined struts to the overall heat transfer is significantly lower than that of the in-line strut arrangements 

reducing the average Nusselt number of the entire cubic cell. In contrast to the previously described 

geometries, the inclined struts remain in the steady state flow regime up to Reynolds numbers of 100. 

Due to the channel-like flow, the thermal boundary layers are fully developed leading to a constant 

Nusselt number. Therefore, the heat transfer is significantly reduced compared to the other two 

geometries in the unsteady laminar flow regime.  

As stated above, the heat transfer within the cubic cells, which consist of in-line and inclined strut 

arrangements, appears to be influenced by both geometries. The cubic cells share several characteristics 

with the in-line struts, such as the curve progressions of the transition to the unsteady flow regime (see 

Figure 2) and the convective heat transfer (see Figure 4). However, the inclined struts postpone the 

beginning of vortex formation and reduce the overall heat transfer in the cell. Since these observations 

support the idea of superposition (see Figure 1), a corresponding modelling approach for the convective 

heat transfer is tested in section 3.3. 

3.3 Modelling the convective heat transfer 

The concept of superposition is used to model the convective heat transfer in cubic POCS during 

unsteady laminar flow. It is based on the idea that the interactions between the strut arrangements are 

negligibly small allowing the overall heat flux of the unit cell �̇�cubic to be described as the sum of the 

contributions of each strut arrangement with 𝐴 denoting the surface area and Δ𝑇 the characteristic 

temperature difference:  

 �̇�cubic = �̇�in−line + �̇�inclined = (ℎin−line ∙ 𝐴in−line +  ℎinclined ∙ 𝐴inclined) ∙ Δ𝑇 (3) 

To account for the reduced heat transfer near the strut junctions (see section 3.2), a newly developed 

empirical factor is added, which reduces the respective surface area of the struts. After division by the 



 
 

surface area of the cubic cell and the characteristic temperature difference, the Nusselt number of the 

cubic cell can be obtained from Eq. (4): 

 
𝑁𝑢cubic = 𝑁𝑢in−line ∙

2𝜋 ∙ 𝑑2 ∙ (𝑠T − 1.29)

𝐴cubic
+ 𝑁𝑢inclined ∙

𝜋 ∙ 𝑑2 ∙ (𝑠L − 1.29)

𝐴cubic
 (4) 

For the use of the proposed equation, the convective heat transfer of the respective strut 

arrangements has to be known. As the heat transfer in in-line strut arrangements has been investigated 

by many authors for many years, multiple correlations are available for the range of Reynolds numbers 

of interest. In this work, a correlation developed by Gnielinski [8] is used to calculate the Nusselt number 

of the in-line struts with the Reynolds number proposed in section 3.1:  

 

𝑁𝑢in−line = (0.3 + √𝑁𝑢lam
2 + 𝑁𝑢turb

2 ) ∙ (1 +
0.7

(1 −
𝜋

4 ∙ 𝑠T
)

1.5

𝑠L
𝑠T

− 0.3

(
𝑠L
𝑠T

+ 0.7)
2) (5) 

The correlation superimposes the contributions of the laminar heat transfer and turbulent heat 

transfer in the strut arrangements. The laminar Nusselt number 𝑁𝑢lam is determined according to 

Eq. (6): 

 𝑁𝑢lam = 0.664 ∙ √𝑅𝑒 ∙ √𝑃𝑟
3

 (6) 

The turbulent Nusselt number 𝑁𝑢turb is obtained from Eq. (7): 

 
𝑁𝑢turb =

0.037 ∙ 𝑅𝑒0.8 ∙ 𝑃𝑟

1 + 2.443 ∙ 𝑅𝑒−0.1 ∙ (𝑃𝑟2/3 − 1)
 (7) 

The convective heat transfer of the inclined struts is calculated according to Eq. (8), which was 

derived by fitting the simulation results obtained in this work.  

 
𝑁𝑢inclined =

9.3

𝑠T
+ 0.53 (8) 

Finally, the Nusselt numbers obtained from the simulations and Eq. (4) are compared in Figure 5. 
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Figure 5: Comparison between the Nusselt numbers of cubic cells determined from numerical simulations in the unsteady 

laminar flow regime 𝑁𝑢sim and the results obtained from the modelling approach developed in this work. The beginning of 

the unsteady flow regime is marked in the plot. 



 
 

At the beginning of the unsteady laminar flow regime, larger discrepancies can be observed between 

the simulation results and the model. The gradual transition from the steady to the unsteady flow regime 

is not reflected by Gnielinski’s correlation (see Figure 4) leading to a significant overestimation of the 

convective heat transfer. As stated by Žukauskas [9], the heat transfer at low Reynolds numbers may be 

affected by free convection increasing the determined Nusselt numbers in experimental data. 

Furthermore, Fowler and Bejan [10] pointed out that most experiments used for the derivation of the 

aforementioned correlations were conducted with a limited number of strut rows. According to their 

research, the results may still have been significantly influenced by entrance effects. In contrast, the 

numerical simulations neglect buoyancy effects as well as entrance effects due to the use of periodic 

boundary conditions. However, as the unsteady flow regime approaches a fully developed state in the 

simulations, a very good agreement between the simulation data and the model can be observed. The 

deviations become smaller than 5% showing the potential of this modelling approach.      

4. CONCLUSIONS 

The convective heat transfer in cubic POCS during unsteady laminar flow was investigated with 

numerical simulations. First, the regime boundaries were determined, which exhibit a pronounced 

dependency on the dimensionless pitch of the cubic cell. Afterwards, a strong influence of the present 

flow regime on the heat transfer coefficient was observed. Similarities between the characteristics of 

cubic cells and their corresponding in-line and inclined strut arrangements motivated the development 

of a new modelling approach. Based on the idea of superposition, a model for the prediction of the heat 

transfer coefficient in cubic POCS was developed, showing a very good agreement with the simulation 

results with a mean deviation of 18%. 
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