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Abstract.    In the present study, we simulate the natural convection of FENE-P fluid within a cubic 

cavity by the general pressure equation on the GPU cluster. Influences of the polymer length and the 

Weissenberg numbers on the heat transfer are investigated, where the latter effect is observed to be 

significant at long polymer length. By varying the polymer length, heat transfer enhancement (HTE) 

and reduction (HTR) are found at moderate Ra numbers. Overall, the short polymer chain tends to cause 

HTE effect, and the long polymer length acts otherwise. Here, the short polymer length achieves 12% 

thermal enhancement over the Newtonian fluid at Ra = 106. 

INTRODUCTION 

Adding additives into the working fluid to improve the thermal performance has been investigated 

over the years, and most concentrate on the Rayleigh–Bénard convection problems. However, few are 

studying three-dimensional natural convection with heated sidewall, an idealized geometry for many 

engineering applications. In the present work, the influences of the polymer length and the Weissenberg 

number, 𝑊𝑖, are considered to determine the non-Newtonian fluid's impact on the natural convection 

problems inside a cubic cavity at Pr = 7 and Ra = 104~107. Here, the velocity and pressure coupling 

are via the general pressure equation, and the polymer additive is modeled using the FENE-P model [1]. 

Simulations are conducted on the GPU cluster.  

METHODOLOGY 

The governing equations for simulating the thermal viscous-elastic fluid are, 

where b is the solvent to total viscosity ratio, and 𝜏𝑝 is the polymer stress. The Weissenberg number 

(Wi) defined as 𝑊𝑖 =
𝜆𝑝𝑢𝑜

𝐿
 . Here, γ = Pr and Ma = 0.1 are adopted in the present work, as Toutant [2] 

suggested. 

The polymer-addition stress 𝜏𝑝 is obtained by solving the conformation tensor  equation. This study 

adopts the finitely extensible non-linear elastic dumbbell model with the Peterlin's approximation 

(FENE-P) [3]. An elastic spring connects a pair of spherical beads polymer molecules. The polymer 

stress and the conformation tensor are expressed as, 
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The numerical procedure is based on the finite volume approach with a staggered grid 

arrangement[4], where governing equations' spatial and temporal terms are discretized using the second-

order central difference scheme and the third-order TVD Runge-Kutta scheme [5]. Besides, the third-

order TVD MUSCL scheme is used on convection terms of conformation tensor to improve the 

numerical stability. One-dimensional decomposition using GPU-Direct is adopted for the multi-GPU 

computation.  

NUMERICAL RESULTS 

This study considers the natural convection within a cubic cavity with two differentially heated 

opposing vertical walls (x=0 and 1). The rest of the walls are adiabatic as shown in Fig. 1. The grid 

density is 1283, which symmetry non-uniform grid using hyperbolic tangent function is adopted in all 

directions. Fig. 2 shows the predicted temperature and velocity vector along the vertical wall bisector 

(y=0.5), cutting the differential heated walls for Newtonian, HTE, and HTR case at Ra = 106. The 

addition of the polymer changes the thermal distributions and hence velocity. Compared to the 

Newtonian case, the contours show the enhanced and reduced vertical velocity for the HTE and HTR 

walls. The reduction of the HTR case's vertical velocity is due to the elevated level of the horizontal 

vortex, as shown in Fig. 3, which also causes the decrease of heat transfer near the wall. Finally, the 

influences of the Weissenberg number on the heat transfer can be seen in Fig. 4, and enhancement and 

reduction are observed at different polymer extension lengths. 
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Figure 1: The geometry of natural convection flow with vertical differential heated sidewalls. The 

computational domain is 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and 0 ≤ z ≤ 1. 
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(a) Newtonian (b) HTE (c) HTR 

Figure 2: Isotherms and velocity vector for natural convection of Newtonian fluid and non-Newtonian fluid at 

y=0.5 plane and Ra = 106. HTE: Wi = 50, b = 0.8, L𝑚𝑎𝑥
2 = 10. HTR: Wi = 50, b = 0.8, L𝑚𝑎𝑥

2 = 500. 

   
(d) Newtonian (e) HTE (f) HTR 

Figure 3: Isotherms and velocity vector for natural convection of Newtonian fluid and non-Newtonian fluid at 

z=0.5 plane and Ra = 106. HTE: Wi = 50, b = 0.8, L𝑚𝑎𝑥
2 = 10. HTR: Wi = 50, b = 0.8, L𝑚𝑎𝑥

2 = 500. 

 
Figure 4: Mean Nusselt number distributions at different Wi numbers when Ra = 106. 

 


