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1 INTRODUCTION

Heat transfer processes can be complex. In simple cases, prediction of thermal phenomena is often
reliant on empirical models. For more complex scenarios, computationally intensive numerical mod-
elling and simulation techniques are required, such as Computational Fluid Dynamics (CFD). While
the computational requirements of CFD may be reduced at the expense of lower-fidelity Coarse Grid
(CG) results, the discretisation error will, in general, be non-zero. This study will investigate novel data-
driven methods which leverage the computational efficiency of CG solutions without adversely affecting
accuracy. We will evaluate selected Neural Network (NN) architectures in their capacity to correct low-
fidelity CG data by learning from high-fidelity grid-converged data, incorporating corrective terms for
discretisation error. Selected neural networks will be employed to predict the error in a given variable
for a coarse grid simulation.

2 RECENT DEVELOPMENTS

Hanna et al. [1] proposed a simple neural network architecture with dimensionless flow variables in
the feature vector to learn the error in a specified quantity of interest. The poor extrapolative capabilities
of their model highlighted a key limitation of hybrid CFD-NN approaches — Neural Networks are highly
sensitive to hyperparameters. We anticipate a systematic approach to network design will provide im-
proved predictive capacity. Margenberg et al. [2] successfully incorporated the learned model to a layer
of the solver in order to tackle transient simulations. Bao et al. [3] demonstrated the capabilities of their
CFD-NN corrective method. For their particular case study, they showed a strong agreement between
the model predicted values and high-fidelity ground truth. Similarly, Kochkov et al. [4] showcased a
corrective approach with strong agreement with high resolution DNS data. Their chosen Convolutional
Neural Network (CNN) architectures will be studied in more detail in our ongoing work in this area.

3 METHODOLOGY

A simple test case has been identified: incompressible 2D transport of a passive scalar (Equation 1).
A neural network was employed to predict the discretisation error in a given variable for a CG simulation
of this equation. In Equation 1, 7" is a given scalar, u is the velocity vector, and & is the diffusion constant.
Source terms were set to zero.
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OpenFOAM v8’s scalarTransportFoam solver was used for the simulations. The 2D domain
size was 1m in width and height. Mesh sizes were as follows:

o Coarse: 20 cells x 20 cells
¢« Fine: 100 cells x 100 cells

The velocity magnitude was specified as constant across the domain, and input angle of velocity was
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Figure 1: Coarse mesh (left) and Fine mesh (right) simulations, with oo = 0.001.

constant at @ = 45°. A preliminary set of experiments was used to determine the interpolative capability
of the trained models. This was achieved by evaluating the model performance at intermediate values of
o between those used for training. In our future work, we will also determine the extrapolative capability
by extending the range of o. The Python library, PyTorch', was used to build the machine learning
models. A library was developed to automate OpenFOAM simulations and convert the output data to
PyTorch tensors, with code available at: https://github.com/HamzaSardar/TorchFoam. For element-wise
comparison between the meshes, high fidelity data was down-sampled where cell-centres overlap with
the CG solution.

The leading terms in the Taylor expansion of scalar T, and the local Péclet number at each cell,

. . 2 .
were considered for input to the feature vector: %, %7T, Pe.;;. These features were selected to provide
1 i

information on the physical diffusivity to the network, and the derivatives are linked to the numerical
calculation of the passive scalar via a Taylor series expansion. Thus, we anticipated a relationship be-
tween the derivatives and the discretisation error in the solution. The hyperparameters to be explored in
this work include the size and number of hidden layers, activation functions, optimisation algorithms,
the effects of regularisation, and the learning rate. The initial setup was a fully connected neural network
using Tanh activation and a single hidden layer with 10 neurons, going to a single output—the error
in T. The starting optimiser was Adam, from Kingma and Ba [5]. The initial learning rate was set to
0.01 which would be adapted by the optimisation algorithm as the training progressed. A shallow initial
network was selected to gain a strong fundamental understanding of the learning mechanisms in NNs
before expanding the current work by exploring the potential for deeper networks.

4 RESULTS

Our results are presented in Figure 2. It is worth emphasizing that these results are a preliminary
effort, representing a work in progress. As we advance this project, we expect improvement in the
already promising results presented herein, with models capable of capturing increasing levels of non-
linearity. The scenarios considered are summarised below.

e Training: oo € 0.001,0.005,0.01,0.05
e Interpolative Evaluation: a € 0.0025,0.0075,0.025

Model evaluation on the training flows by comparing the predicted error to the ground truth gives a
correlation coefficient of 0.982, indicating a strong correlation between the actual and predicted error.
Evaluation on the evaluative flows gives a correlation coefficient of 0.929 — a good indication the model
is performing well on scenarios the NN has not previously seen. During testing, the network was con-
sistently trained to a training and validation loss on the order of 107>, suggesting that our network had
not overfitted to the training data. The network performs marginally worse on the evaluation set, but the
correlation coefficient is sufficiently high to imply a strong performance on the evaluative dataset, with
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Figure 2: Model evaluation on training flows (left), model evaluation on evaluative flows (right).

the network predicting the actual error with a high degree of accuracy. The overall performance is an
indicator that the trained network has appropriately addressed the ‘bias-variance trade-off” — a modest
error on the training set is accepted in exchange for improved ability to generalise to unseen data. It
should be noted that we do not seek a perfect correlation on the training set; this would imply overfitting
to the training set, and thus poorer generalisation.

S CONCLUSIONS AND PROPOSED WORK

We have successfully demonstrated that a simple neural network can learn to predict the discretisation
error in a given variable from characteristic dimensionless groups and variable derivatives. Our trained
model performs well on the benchmark case of incompressible 2D transport of a scalar, attaining a strong
correlation coefficient against the ground truth of 0.929 in the evaluative scenarios. We can deduce that
our network has generalised well, learning a meaningful relationship between inputs and outputs. Further
work will extend this methodology to explore:

*  The use of this network in a CFD code in inference mode.

*  Physics-constrained loss functions and regularisation to embed governing physics in the error
prediction.

e Alternative network architectures, including convolutional layers to enhance translational in-
variance and exploit spatially coherent flow features.

e Application of developed models to more complex multi-physics scenarios, involving turbulent
flows and heat transfer, as well as network sensitivity to mesh quality and resolution. We will
investigate extending this method to Nuclear Thermal Hydraulics (NTH) applications.
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