Table of Contents

Flow around Surface-Mounted Cubical Obstacle

Experiments by Martinuzzi and Tropea


Description

The flow field around a surface-mounted cube has been investigated, using LDA measurement techniques. The experiments were performed in a fully developed channel flow, so that the incoming flow conditions are well-defined. The Reynolds number, based on the height of the channel, is around \(8\times 10^4\), and the geometry and coordinate system are shown schematically in figure 1.

 Flow geometryFig. 1: Flow geometry and coordinate system

Experimental Apparatus and Techniques

The flow considered here was investigated by means of LDA measurements.

The dimensions of the channel are 390 cm by 60 cm by 5 cm (\(l \times w \times h\)). The cube, of height \(H=h/2\), was placed with its leading edge 52 channel heights downstream of the inlet. The boundary-layer was tripped at the inlet in order to obtain fully-developed conditions at least 5 channel heights upstream of the front face of the cube.

Flow visualisation and surface pressure measurements are also reported in Martinuzzi & Tropea (1993). A sketch illustrating the flow structures identified is shown in figure 2.

 Flow structuresFig. 2: Sketch of flow structures

Available Measurements

Measurements available include profiles across the channel height at a selection of locations (both on, and off, the flow centreline) of:

Sample plots of selected quantities are available.

The plots in figure 3 and figure 4 indicate the locations at which profiles are provided.

 Measurement locationsFig. 3: Locations of measured profiles

 Measurement locations near cubeFig. 4: Detail of measured profile locations around the cube

The data can be downloaded as compressed archives from the links below, or as individual files.

The file readme.txt contains some description of the data files.

\(x/H\) \(z/H\) \(u\)-\(v\) Data \(u\)-\(w\) Data
Mean Vel., Reynolds stresses Third/fourth order Moments Mean Vel., Reynolds stresses Third/fourth order Moments
-18.02 0.0 x01z09_a.dat x01z09_b.dat
-14.10 0.0 x02z09_c.dat x02z09_d.dat
6.0 x02z16_c.dat x02z16_d.dat
-11.44 0.0 x03z09_a.dat x03z09_b.dat
-10.0 -6.0 x04z01_c.dat x04z01_d.dat
6.0 x04z16_c.dat x04z16_d.dat
-7.0 0.0 x05z09_a.dat x05z09_b.dat
-6.9 0.0 x06z09_c.dat x06z09_d.dat
6.0 x06z16_c.dat x06z16_d.dat
-5.0 -1.0 x07z03_a.dat x07z03_b.dat
0.0 x07z09_a.dat x07z09_b.dat
1.0 x07z12_a.dat x07z12_b.dat
-4.0 0.0 x08z09_a.dat x08z09_b.dat
-3.0 0.0 x09z09_a.dat x09z09_b.dat
-2.0 0.0 x10z09_a.dat x10z09_b.dat
-1.5 0.0 x11z09_a.dat x11z09_b.dat
-1.0 0.0 x12z09_a.dat x12z09_b.dat x12z09_c.dat x12z09_d.dat
0.5 x12z11_a.dat x12z11_b.dat
1.0 x12z12_a.dat x12z12_b.dat
-0.75 0.0 x13z09_a.dat x13z09_b.dat x13z09_c.dat x13z09_d.dat
0.5 x13z11_a.dat x13z11_b.dat
1.0 x13z12_a.dat x13z12_b.dat
-0.5 0.0 x14z09_a.dat x14z09_b.dat x14z09_c.dat x14z09_d.dat
0.5 x14z11_a.dat x14z11_b.dat x14z11_c.dat x14z11_d.dat
1.0 x14z12_a.dat x14z12_b.dat
-0.44 0.0 x15z09_a.dat x15z09_b.dat
-0.42 0.0 x16z09_a.dat x16z09_b.dat
-0.33 6.0 x17z16_c.dat x17z16_d.dat
-0.32 0.0 x18z09_a.dat x18z09_b.dat x18z09_c.dat x18z09_d.dat
0.5 x18z11_c.dat x18z11_d.dat
1.0 x18z12_a.dat x18z12_b.dat
-0.25 0.0 x19z09_a.dat x19z09_b.dat
0.25 x19z10_a.dat x19z10_b.dat x19z10_c.dat x19z10_d.dat
0.5 x19z11_a.dat x19z11_b.dat
1.0 x19z12_a.dat x19z12_b.dat
-0.02 -0.5 x20z07_a.dat x20z07_b.dat
0.0 -1.5 x21z02_a.dat x21z02_b.dat
-1.0 x21z03_a.dat x21z03_b.dat
-0.76 x21z04_a.dat x21z04_b.dat
-0.74 x21z05_a.dat x21z05_b.dat
-0.54 x21z06_a.dat x21z06_b.dat
-0.5 x21z07_a.dat x21z07_b.dat
-0.25 x21z08_a.dat x21z08_b.dat
0.0 x21z09_a.dat x21z09_b.dat x21z09_c.dat x21z09_d.dat
0.25 x21z10_c.dat x21z10_d.dat
0.5 x21z11_c.dat x21z11_d.dat
1.0 x21z12_c.dat x21z12_d.dat
1.6 x21z14_c.dat x21z14_d.dat
3.2 x21z15_c.dat x21z15_d.dat
0.25 -0.25 x22z08_a.dat x22z08_b.dat
0.0 x22z09_a.dat x22z09_b.dat x22z09_c.dat x22z09_d.dat
0.25 x22z10_c.dat x22z10_d.dat
0.5 -1.5 x23z02_a.dat x23z02_b.dat
-1.0 x23z03_a.dat x23z03_b.dat
-0.5 x23z07_a.dat x23z07_b.dat
-0.25 x23z08_a.dat x23z08_b.dat
0.0 x23z09_a.dat x23z09_b.dat x23z09_c.dat x23z09_d.dat
0.25 x23z10_c.dat x23z10_d.dat
0.5 x23z11_c.dat x23z11_d.dat
1.0 x23z12_c.dat x23z12_d.dat
1.6 x23z14_c.dat x23z14_d.dat
0.75 0.0 x24z09_a.dat x24z09_b.dat x24z09_c.dat x24z09_d.dat
1.0 -1.5 x25z02_a.dat x25z02_b.dat
-1.0 x25z03_a.dat x25z03_b.dat
-0.5 x25z07_a.dat x25z07_b.dat
-0.25 x25z08_a.dat x25z08_b.dat
0.0 x25z09_a.dat x25z09_b.dat x25z09_c.dat x25z09_d.dat
0.25 x25z10_c.dat x25z10_d.dat
0.5 x25z11_c.dat x25z11_d.dat
1.0 x25z12_c.dat x25z12_d.dat
1.6 x25z14_c.dat x25z14_d.dat
1.08 0.0 x26z09_a.dat x26z09_b.dat x26z09_c.dat x26z09_d.dat
1.25 0.0 x27z09_a.dat x27z09_b.dat
0.25 x27z10_a.dat x27z10_b.dat x27z10_c.dat x27z10_d.dat
0.5 x27z11_a.dat x27z11_b.dat x27z11_c.dat x27z11_d.dat
1.33 0.0 x28z09_c.dat x28z09_d.dat
1.5 0.0 x29z09_a.dat x29z09_b.dat
0.5 x29z11_a.dat x29z11_b.dat x29z11_c.dat x29z11_d.dat
1.0 x29z12_a.dat x29z12_b.dat x29z12_c.dat x29z12_d.dat
1.56 0.0 x30z09_c.dat x30z09_d.dat
2.0 0.0 x31z09_a.dat x31z09_b.dat x31z09_c.dat x31z09_d.dat
0.5 x31z11_a.dat x31z11_b.dat x31z11_c.dat x31z11_d.dat
1.0 x31z12_a.dat x31z12_b.dat x31z12_c.dat x31z12_d.dat
1.2 x31z13_a.dat x31z13_b.dat
1.6 x31z14_c.dat x31z14_d.dat
2.33 0.0 x32z09_c.dat x32z09_d.dat
2.41 0.5 x33z11_c.dat x33z11_d.dat
1.0 x33z12_c.dat x33z12_d.dat
2.5 0.0 x34z09_a.dat x34z09_b.dat
0.5 x34z11_a.dat x34z11_b.dat
1.0 x34z12_a.dat x34z12_b.dat
3.0 0.0 x35z09_a.dat x35z09_b.dat
4.0 0.0 x36z09_a.dat x36z09_b.dat
6.0 0.0 x37z09_a.dat x37z09_b.dat
8.0 0.0 x38z09_a.dat x38z09_b.dat

References

  1. Hussain, H.J., Martinuzzi, R.J. (1996). Energy balance for turbulent flow around a surface mounted cube placed in a channel. Phys. Fluids, Vol. 8, pp. 764-780.
  2. Martinuzzi, R., Tropea, C. (1993). The flow around surface-mounted, prismatic obstacles placed in a fully developed channel flow. Journal of Fluid Engineering, Vol. 115, pp. 85-92.
  3. Martinuzzi, R., Prud'homme, M. (1993). Higher-order correlations for the turbulent flow around a surface-mounted cube placed in a channel. Proc. 9th Int. Symp. on Turbulent Shear Flows, Kyoto, Japan.
  4. Martinuzzi, R., Melling, A., Tropea, C. (1993). Reynolds stress field for the turbulent flow around a surface-mounted cube placed in a channel. Proc. 9th Int. Symp. on Turbulent Shear Flows, Kyoto, Japan.
  5. Murakami, S., Mochida, A., Ooka, R. (1993). Numerical simulation of flowfield over surface-mounted cube with various second-moment closure models. Proc. 9th Int. Symp. on Turbulent Shear Flows, Kyoto, Japan.

Indexed data:

case041 (dbcase, semi_confined_flow, flow_around_body)
case041
titleFlow Around Surface-Mounted Cubical Obstacle
authorMartinuzzi, Tropea
year1993
typeEXP
flow_tag3d, surface_mounted_body